Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Hung-Lung Allen Huang x
  • Refine by Access: All Content x
Clear All Modify Search
Daniel K. Zhou, William L. Smith Sr., Xu Liu, Allen M. Larar, Stephen A. Mango, and Hung-Lung Huang


A physical inversion scheme has been developed dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1D) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression retrieval. The solution is iterated in order to account for nonlinearity in the 1D variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud-top level are obtained. For both optically thin and thick cloud situations, the cloud-top height can be retrieved with relatively high accuracy (i.e., error <1 km). National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed Interferometer (NAST-I) retrievals from the The Observing-System Research and Predictability Experiment (THORPEX) Atlantic Regional Campaign are compared with coincident observations obtained from dropsondes and the nadir-pointing cloud physics lidar (CPL). This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view, regardless of cloud cover, from future ultraspectral geostationary satellite sounding instruments, such as the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS). However, this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on polar satellites, such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project, and the follow-on NPOESS series of satellites.

Full access
Thomas J. Greenwald, R. Bradley Pierce, Todd Schaack, Jason Otkin, Marek Rogal, Kaba Bah, Allen Lenzen, Jim Nelson, Jun Li, and Hung-Lung Huang


In support of the Geostationary Operational Environmental Satellite R series (GOES-R) program, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin–Madison is generating high quality simulated Advanced Baseline Imager (ABI) radiances and derived products in real time over the continental United States. These data are mainly used for testing data-handling systems, evaluating ABI-derived products, and providing training material for forecasters participating in GOES-R Proving Ground test bed activities. The modeling system used to generate these datasets consists of advanced regional and global numerical weather prediction models in addition to state-of-the-art radiative transfer models, retrieval algorithms, and land surface datasets. The system and its generated products are evaluated for the 2014 Pacific Northwest wildfires; the 2013 Moore, Oklahoma, tornado; and Hurricane Sandy. Simulated aerosol optical depth over the Front Range of Colorado during the Pacific Northwest wildfires was validated using high-density Aerosol Robotic Network (AERONET) measurements. The aerosol, cloud, and meteorological modeling system used to generate ABI radiances was found to capture the transport of smoke from the Pacific wildfires into the Front Range of Colorado and true-color imagery created from these simulated radiances provided visualization of the smoke plumes. Evaluation of selected simulated ABI-derived products for the Moore tornado and Hurricane Sandy cases was done using real-time GOES sounder/imager products produced at CIMSS. Results show that simulated ABI moisture and atmospheric stability products, cloud products, and red–green–blue (RGB) airmass composite imagery are well suited as proxy ABI data for user preparedness.

Full access
Sid-Ahmed Boukabara, Vladimir Krasnopolsky, Stephen G. Penny, Jebb Q. Stewart, Amy McGovern, David Hall, John E. Ten Hoeve, Jason Hickey, Hung-Lung Allen Huang, John K. Williams, Kayo Ide, Philippe Tissot, Sue Ellen Haupt, Kenneth S. Casey, Nikunj Oza, Alan J. Geer, Eric S. Maddy, and Ross N. Hoffman


Promising new opportunities to apply artificial intelligence (AI) to the Earth and environmental sciences are identified, informed by an overview of current efforts in the community. Community input was collected at the first National Oceanic and Atmospheric Administration (NOAA) workshop on “Leveraging AI in the Exploitation of Satellite Earth Observations and Numerical Weather Prediction” held in April 2019. This workshop brought together over 400 scientists, program managers, and leaders from the public, academic, and private sectors in order to enable experts involved in the development and adaptation of AI tools and applications to meet and exchange experiences with NOAA experts. Paths are described to actualize the potential of AI to better exploit the massive volumes of environmental data from satellite and in situ sources that are critical for numerical weather prediction (NWP) and other Earth and environmental science applications. The main lessons communicated from community input via active workshop discussions and polling are reported. Finally, recommendations are presented for both scientists and decision-makers to address some of the challenges facing the adoption of AI across all Earth science.

Open access