Search Results
Abstract
In this study, the effect of boundary-condition configurations in the regional Weather Research and Forecasting (WRF) Model on the adjoint-based forecast sensitivity observation impact (FSOI) for 24 h forecast error reduction was evaluated. The FSOI has been used to diagnose the impact of observations on the forecast performance in several global and regional models. Different from the global model, in the regional model, the lateral boundaries affect forecasts and FSOI results. Several experiments with different lateral boundary conditions were conducted. The experimental period was from 1 to 14 June 2015. With or without data assimilation, the larger the buffer size in lateral boundary conditions, the smaller the forecast error. The nonlinear and linear forecast error reduction (i.e., observation impact) decreased as the buffer size increased, implying larger impact of lateral boundaries and smaller observation impact on the forecast error. In most experiments, in terms of observation types (variables), upper-air radiosonde observations (brightness temperature) exhibited the greatest observation impact. The ranking of observation impacts was consistent for observation types and variables among experiments with a constraint in the response function at the upper boundary. The fractions of beneficial observations were approximately 60%, and did not considerably vary depending on the boundary conditions specified when calculating the FSOI in the regional modeling framework.
Abstract
In this study, the effect of boundary-condition configurations in the regional Weather Research and Forecasting (WRF) Model on the adjoint-based forecast sensitivity observation impact (FSOI) for 24 h forecast error reduction was evaluated. The FSOI has been used to diagnose the impact of observations on the forecast performance in several global and regional models. Different from the global model, in the regional model, the lateral boundaries affect forecasts and FSOI results. Several experiments with different lateral boundary conditions were conducted. The experimental period was from 1 to 14 June 2015. With or without data assimilation, the larger the buffer size in lateral boundary conditions, the smaller the forecast error. The nonlinear and linear forecast error reduction (i.e., observation impact) decreased as the buffer size increased, implying larger impact of lateral boundaries and smaller observation impact on the forecast error. In most experiments, in terms of observation types (variables), upper-air radiosonde observations (brightness temperature) exhibited the greatest observation impact. The ranking of observation impacts was consistent for observation types and variables among experiments with a constraint in the response function at the upper boundary. The fractions of beneficial observations were approximately 60%, and did not considerably vary depending on the boundary conditions specified when calculating the FSOI in the regional modeling framework.
Abstract
In this study, the effect of assimilating Himawari-8 (HIMA-8) atmospheric motion vectors (AMVs) on forecast errors in East Asia is evaluated using observation system experiments based on the Weather Research and Forecasting Model and three-dimensional variational data assimilation system. The experimental period is from 1 August to 30 September 2015, during which both HIMA-8 and Multifunctional Transport Satellite-2 (MTSAT-2) AMVs exist. The energy-norm forecast error based on the analysis of each experiment as reference was reduced more by replacing MTSAT-2 AMVs with HIMA-8 AMVs than by adding HIMA-8 AMVs to the MTSAT-2 AMVs. When the HIMA-8 AMVs replaced or were added to MTSAT-2 AMVs, the observation impact was reduced, which implies the analysis–forecast system was improved by assimilating HIMA-8 AMVs. The root-mean-square error (RMSE) of the 500-hPa geopotential height forecasts based on the analysis of each experiment decreases more effectively when the region lacking in upper-air wind observations is reduced by assimilating both MTSAT-2 and HIMA-8 AMVs. When the upper-air radiosonde (SOUND) observations are used as reference, assimilating more HIMA-8 AMVs decreases the forecast error. Based on various measures, the assimilation of HIMA-8 AMVs has a positive effect on the reduction of forecast errors. The effects on the energy-norm forecast error and the RMSE based on SOUND observations are greater when HIMA-8 AMVs replaced MTSAT-2 AMVs. However, the effects on the RMSE of the 500-hPa geopotential height forecasts are greater when both HIMA-8 and MTSAT-2 AMVs were assimilated, which implies potential benefits of assimilating AMVs from several satellites for forecasts over East Asia depending on the choice of measurement.
Abstract
In this study, the effect of assimilating Himawari-8 (HIMA-8) atmospheric motion vectors (AMVs) on forecast errors in East Asia is evaluated using observation system experiments based on the Weather Research and Forecasting Model and three-dimensional variational data assimilation system. The experimental period is from 1 August to 30 September 2015, during which both HIMA-8 and Multifunctional Transport Satellite-2 (MTSAT-2) AMVs exist. The energy-norm forecast error based on the analysis of each experiment as reference was reduced more by replacing MTSAT-2 AMVs with HIMA-8 AMVs than by adding HIMA-8 AMVs to the MTSAT-2 AMVs. When the HIMA-8 AMVs replaced or were added to MTSAT-2 AMVs, the observation impact was reduced, which implies the analysis–forecast system was improved by assimilating HIMA-8 AMVs. The root-mean-square error (RMSE) of the 500-hPa geopotential height forecasts based on the analysis of each experiment decreases more effectively when the region lacking in upper-air wind observations is reduced by assimilating both MTSAT-2 and HIMA-8 AMVs. When the upper-air radiosonde (SOUND) observations are used as reference, assimilating more HIMA-8 AMVs decreases the forecast error. Based on various measures, the assimilation of HIMA-8 AMVs has a positive effect on the reduction of forecast errors. The effects on the energy-norm forecast error and the RMSE based on SOUND observations are greater when HIMA-8 AMVs replaced MTSAT-2 AMVs. However, the effects on the RMSE of the 500-hPa geopotential height forecasts are greater when both HIMA-8 and MTSAT-2 AMVs were assimilated, which implies potential benefits of assimilating AMVs from several satellites for forecasts over East Asia depending on the choice of measurement.
Abstract
In this study, the observation impacts on 24-h forecast error reduction (FER), based on the adjoint method in the four-dimensional variational (4DVAR) data assimilation (DA) and hybrid-4DVAR DA systems coupled with the Unified Model, were evaluated from 0000 UTC 5 August to 1800 UTC 26 August 2014. The nonlinear FER in hybrid-4DVAR was 12.2% greater than that in 4DVAR due to the use of flow-dependent background error covariance (BEC), which was a weighted combination of the static BEC and the ensemble BEC based on ensemble forecasts. In hybrid-4DVAR, the observation impacts (i.e., the approximated nonlinear FER) for most observation types increase compared to those in 4DVAR. The increased observation impact from using hybrid-4DVAR instead of 4DVAR changes depending on the analysis time and regions. To calculate the ensemble BEC in hybrid-4DVAR, analyses at 0600 and 1800 UTC (0000 and 1200 UTC) used 3-h (9-h) ensemble forecasts. Greater observation impact was obtained when 3-h ensemble forecasts were used for the ensemble BEC at 0600 and 1800 UTC, than with 9-h ensemble forecasts at 0000 and 1200 UTC. Different from other observations, the atmospheric motion vectors (AMVs) deduced from geostationary satellite are more frequently observed in the same area. When the ensemble forecasts with longer integration times were used for the ensemble BEC in hybrid-4DVAR, the observation impact of the AMVs decreased the most in East Asia. This implies that the observation impact of AMVs in East Asia shows the highest sensitivity to the integration time of the ensemble members used for deducing the flow-dependent BEC in hybrid-4DVAR.
Abstract
In this study, the observation impacts on 24-h forecast error reduction (FER), based on the adjoint method in the four-dimensional variational (4DVAR) data assimilation (DA) and hybrid-4DVAR DA systems coupled with the Unified Model, were evaluated from 0000 UTC 5 August to 1800 UTC 26 August 2014. The nonlinear FER in hybrid-4DVAR was 12.2% greater than that in 4DVAR due to the use of flow-dependent background error covariance (BEC), which was a weighted combination of the static BEC and the ensemble BEC based on ensemble forecasts. In hybrid-4DVAR, the observation impacts (i.e., the approximated nonlinear FER) for most observation types increase compared to those in 4DVAR. The increased observation impact from using hybrid-4DVAR instead of 4DVAR changes depending on the analysis time and regions. To calculate the ensemble BEC in hybrid-4DVAR, analyses at 0600 and 1800 UTC (0000 and 1200 UTC) used 3-h (9-h) ensemble forecasts. Greater observation impact was obtained when 3-h ensemble forecasts were used for the ensemble BEC at 0600 and 1800 UTC, than with 9-h ensemble forecasts at 0000 and 1200 UTC. Different from other observations, the atmospheric motion vectors (AMVs) deduced from geostationary satellite are more frequently observed in the same area. When the ensemble forecasts with longer integration times were used for the ensemble BEC in hybrid-4DVAR, the observation impact of the AMVs decreased the most in East Asia. This implies that the observation impact of AMVs in East Asia shows the highest sensitivity to the integration time of the ensemble members used for deducing the flow-dependent BEC in hybrid-4DVAR.