Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: J. R. Minder x
  • All content x
Clear All Modify Search
Jessica D. Lundquist, Justin R. Minder, Paul J. Neiman, and Ellen Sukovich


The rate of precipitation increase with elevation, termed the orographic precipitation gradient (OPG), is critically important for hydrologic forecasting in mountain basins that receive both rain and snow. Here, the following are examined to see how well they are able to predict the OPG and how it changes between storms and years: 1) a linear model of orographic precipitation forced by upstream radiosonde data, 2) monthly Parameter-Elevation Regressions on Independent Slopes Model (PRISM) precipitation data, and 3) seven years of hourly wind profiler data used to identify characteristics of the Sierra barrier jet (SBJ). These are compared against 124 daily resolution (four of which also had quality controlled, hourly resolution) precipitation gauge records in the northern Sierra Nevada. All methods represent the OPG well in the mean and during a year when less than 30% of the precipitation occurred on days with SBJs. However, the linear model and PRISM do not adequately capture annual variations in the OPG during years when more than 70% of the precipitation occurred on days with SBJs. Throughout all of the years, wind profiler data indicating the height of the SBJ provided additional, and necessary, information. The OPG is negatively correlated with the height of the SBJ. The SBJ height is lower, and hence, the OPG greater when the westerly winds are stronger, with more vertical wind shear. These westerly storms result in greater increases of precipitation with elevation, which act to increase snow storage in most storms but also to increase storm runoff during warmer-than-average storms.

Full access
Ronald B. Smith, Justin R. Minder, Alison D. Nugent, Trude Storelvmo, Daniel J. Kirshbaum, Robert Warren, Neil Lareau, Philippe Palany, Arlington James, and Jeffrey French

The Dominica Experiment (DOMEX) took place in the eastern Caribbean from 4 April to 10 May 2011 with 21 research flights of the Wyoming King Air and several other observing systems. The goal was an improved understanding of the physics of convective orographic precipitation in the tropics. Two types of convection were found. During a period of weak trade winds, diurnal thermal convection was seen over Dominica. This convection caused little precipitation but carried aloft air with island-derived aerosol and depleted CO2. During periods of strong trades, mechanically forced convection over the windward slopes brought heavy rain to the high terrain. This convection was “seeded” by trade-wind cumuli or neutrally buoyant cool wet patches of air. In this mechanically forced convection, air parcels did not touch the island surface to gain buoyancy so no island-derived tracers were lofted. With fewer aerosols, the mean cloud droplet diameter increased from 15 to 25 μm. Plunging airflow and a wake were found in the lee of Dominica. The DOMEX dataset will advance our understanding and test our theories of cumulus triggering and aerosol influence on precipitation.

Full access
Jerald A. Brotzge, J. Wang, C. D. Thorncroft, E. Joseph, N. Bain, N. Bassill, N. Farruggio, J. M. Freedman, K. Hemker Jr., D. Johnston, E. Kane, S. McKim, S. D. Miller, J. R. Minder, P. Naple, S. Perez, James J. Schwab, M. J. Schwab, and J. Sicker


The New York State Mesonet (NYSM) is a network of 126 standard environmental monitoring stations deployed statewide with an average spacing of 27 km. The primary goal of the NYSM is to provide high-quality weather data at high spatial and temporal scales to improve atmospheric monitoring and prediction, especially for extreme weather events. As compared with other statewide networks, the NYSM faced considerable deployment obstacles with New York’s complex terrain, forests, and very rural and urban areas; its wide range of weather extremes; and its harsh winter conditions. To overcome these challenges, the NYSM adopted a number of innovations unique among statewide monitoring systems, including 1) strict adherence to international siting standards and metadata documentation; 2) a hardened system design to facilitate continued operations during extreme, high-impact weather; 3) a station design optimized to monitor winter weather conditions; and 4) a camera installed at every site to aid situational awareness. The network was completed in spring of 2018 and provides data and products to a variety of sectors including weather monitoring and forecasting, emergency management, agriculture, transportation, utilities, and education. This paper focuses on the standard network of the NYSM and reviews the network siting, site configuration, sensors, site communications and power, network operations and maintenance, data quality control, and dissemination. A few example analyses are shown that highlight the benefits of the NYSM.

Restricted access
Sara Lance, Jie Zhang, James J. Schwab, Paul Casson, Richard E. Brandt, David R. Fitzjarrald, Margaret J. Schwab, John Sicker, Cheng-Hsuan Lu, Sheng-Po Chen, Jeongran Yun, Jeffrey M. Freedman, Bhupal Shrestha, Qilong Min, Mark Beauharnois, Brian Crandall, Everette Joseph, Matthew J. Brewer, Justin R. Minder, Daniel Orlowski, Amy Christiansen, Annmarie G. Carlton, and Mary C. Barth


Aqueous chemical processing within cloud and fog water is thought to be a key process in the production and transformation of secondary organic aerosol mass, found abundantly and ubiquitously throughout the troposphere. Yet, significant uncertainty remains regarding the organic chemical reactions taking place within clouds and the conditions under which those reactions occur, owing to the wide variety of organic compounds and their evolution under highly variable conditions when cycled through clouds. Continuous observations from a fixed remote site like Whiteface Mountain (WFM) in New York State and other mountaintop sites have been used to unravel complex multiphase interactions in the past, particularly the conversion of gas-phase emissions of SO2 to sulfuric acid within cloud droplets in the presence of sunlight. These scientific insights led to successful control strategies that reduced aerosol sulfate and cloud water acidity substantially over the following decades. This paper provides an overview of observations obtained during a pilot study that took place at WFM in August 2017 aimed at obtaining a better understanding of Chemical Processing of Organic Compounds within Clouds (CPOC). During the CPOC pilot study, aerosol cloud activation efficiency, particle size distribution, and chemical composition measurements were obtained below-cloud for comparison to routine observations at WFM, including cloud water composition and reactive trace gases. Additional instruments deployed for the CPOC pilot study included a Doppler lidar, sun photometer, and radiosondes to assist in evaluating the meteorological context for the below-cloud and summit observations.

Full access