Search Results
There is widespread concern about the recent increase in North Atlantic hurricane activity. Results here suggest that fledgling storms tracking east to west at low latitudes are more likely to reach hurricane intensity than those traveling on a more northerly trajectory. The annual occurrence of these straight-moving hurricanes (east to west at low latitudes) is statistically linked to the El Niño-Southern Oscillation (ENSO) and to the North Atlantic Oscillation (NAO) using a Poisson regression. Because the occurrence of U.S. hurricanes south of about 35°N is positively correlated with the abundance of straight-moving hurricanes, an accurate prediction of ENSO together with observations of the NAO could be used to forecast seasonal hurricane probabilities along the southeast U.S. coast. It is stressed that in order to understand the range of mechanisms associated with hurricane activity, it is important to consider factors that influence tracks. In this regard, the NAO is a leading candidate.
There is widespread concern about the recent increase in North Atlantic hurricane activity. Results here suggest that fledgling storms tracking east to west at low latitudes are more likely to reach hurricane intensity than those traveling on a more northerly trajectory. The annual occurrence of these straight-moving hurricanes (east to west at low latitudes) is statistically linked to the El Niño-Southern Oscillation (ENSO) and to the North Atlantic Oscillation (NAO) using a Poisson regression. Because the occurrence of U.S. hurricanes south of about 35°N is positively correlated with the abundance of straight-moving hurricanes, an accurate prediction of ENSO together with observations of the NAO could be used to forecast seasonal hurricane probabilities along the southeast U.S. coast. It is stressed that in order to understand the range of mechanisms associated with hurricane activity, it is important to consider factors that influence tracks. In this regard, the NAO is a leading candidate.
The power dissipation of Atlantic tropical cyclones has risen dramatically during the last decades and the increase is correlated with an increase in the underlying sea surface temperature (SST) at low (decadal) frequencies. Because of the large positive correlation between global mean surface air temperature (GT) and Atlantic SST it has been speculated that increases in the power dissipation might, in part, be related to human activity. Here we investigate the question of the relationship between GT and hurricane power dissipation directly using statistical analysis and show that after removing the effect of SST, the correlation between GT and hurricane power dissipation is negative. This suggests that the positive influence of global temperature on Atlantic hurricanes appears to be limited to an indirect connection with tropical Atlantic SST. We also show that the relationship between hurricane power dissipation and Atlantic SST is significant at the high-frequency time scales. El Niño–Southern Oscillation (ENSO) plays an important role in statistically explaining the variations in hurricane power at these higher frequencies.
The power dissipation of Atlantic tropical cyclones has risen dramatically during the last decades and the increase is correlated with an increase in the underlying sea surface temperature (SST) at low (decadal) frequencies. Because of the large positive correlation between global mean surface air temperature (GT) and Atlantic SST it has been speculated that increases in the power dissipation might, in part, be related to human activity. Here we investigate the question of the relationship between GT and hurricane power dissipation directly using statistical analysis and show that after removing the effect of SST, the correlation between GT and hurricane power dissipation is negative. This suggests that the positive influence of global temperature on Atlantic hurricanes appears to be limited to an indirect connection with tropical Atlantic SST. We also show that the relationship between hurricane power dissipation and Atlantic SST is significant at the high-frequency time scales. El Niño–Southern Oscillation (ENSO) plays an important role in statistically explaining the variations in hurricane power at these higher frequencies.
The authors demonstrate a statistical model for the time it takes a manuscript to be accepted for publication. The manuscript received and accepted dates from published manuscripts with the term “hurricane” in the title are obtained from the American Meteorological Society's online publication search feature. The time to acceptance as the difference in days between these two dates is modeled using a Bayesian approach. Assuming an article picked at random gets published, draws from the posterior distribution of the modeled time-to-acceptance parameter indicate about a 12% chance that it will spend more than 210 days (7 months) in review. The model can be adapted to fit similar data obtained using other search criteria.
The authors demonstrate a statistical model for the time it takes a manuscript to be accepted for publication. The manuscript received and accepted dates from published manuscripts with the term “hurricane” in the title are obtained from the American Meteorological Society's online publication search feature. The time to acceptance as the difference in days between these two dates is modeled using a Bayesian approach. Assuming an article picked at random gets published, draws from the posterior distribution of the modeled time-to-acceptance parameter indicate about a 12% chance that it will spend more than 210 days (7 months) in review. The model can be adapted to fit similar data obtained using other search criteria.