Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Jianhua Sun x
  • All content x
Clear All Modify Search
Jianhua Sun and Sixiong Zhao

Abstract

This paper investigated the interactions between the synoptic patterns, quasi-stationary fronts, eastward-propagating cloud clusters from the Tibetan Plateau, surface conditions, and atmospheric stratification processes associated with a 20-day event of freezing precipitation over southern China from January to February 2008. It was found that the long duration of the freezing precipitation process was primarily caused by stationary and anomalous synoptic weather patterns such as a blocking high pressure system in the northern branch and a trough in the south branch of the westerlies, which resulted in the convergence of cold air from northern China and warm, moist air from the south. The cloud clusters over the Tibetan Plateau propagated eastward and showed noticeable impacts in the local areas when they moved over southern China during several similar cloud propagation processes from January to February 2008. An east–west-oriented quasi-stationary front system in southern China, which is rare during the Asian winter monsoon season, is responsible for producing freezing precipitation and snowstorms. A stronger horizontal gradient of the isolines of the pseudo-equivalent potential temperature and higher temperatures at the inversion layer in the western part of the front than that in its eastern part can be found. At the same time, low-level moisture convergence ahead of the front enhanced the formation, development, and persistence of freezing precipitation in the west part of the front. The thickness of the warm layer and the temperature inversion layer also modulated the intensity and duration of freezing rain and ice pellets. Temperature from about −1° to −3°C and weak winds were found to be favorable meteorological factors at the surface level for freezing precipitation. These analysis results are synthesized into a conceptual model that coherently describes the physics processes associated with the synoptic features and quasi-stationary front system as well as the atmospheric stratification process during the freezing precipitation event.

Full access
Jianhua Sun and Fuqing Zhang

Abstract

Convection-permitting numerical experiments using the Weather Research and Forecasting (WRF) model are performed to examine the impact of a thermally driven mountain–plains solenoid (MPS) on the diurnal variations of precipitation and mesoscale convective vortices along the mei-yu front over the east China plains during 1–10 July 2007. The focus of the analyses is a 10-day simulation that used the 10-day average of the global analysis at 0000 UTC as the initial condition and the 10-day averages every 6 h as lateral boundary conditions (with diurnal variations only). Despite differences in the rainfall intensity and location, this idealized experiment successfully simulated the observed diurnal variation and eastward propagation of rainfall and mesoscale convective vortices along the mei-yu front. It was found that the upward branch of the MPS, along with the attendant nocturnal low-level jet, is primarily responsible for the midnight-to-early-morning rainfall enhancement along the mei-yu front. The MPS is induced by differential heating between the high mountain ranges in central China and the low-lying plains in east China. Diabatic heating from moist convection initiated and/or enhanced by the solenoid circulation subsequently leads to the formation of a mesoscale convective vortex that further organizes and amplifies moist convection while propagating eastward along the mei-yu front. The downward branch of the MPS, on the other hand, leads to the suppression of precipitation over the plains during the daytime. The impacts of this regional MPS on the rainfall diurnal variations are further attested to by another idealized WRF simulation that uses fixed lateral boundary conditions.

Full access
Xinlin Yang, Jianhua Sun, and Yongguang Zheng

Abstract

A method using cloud-to-ground lightning was developed to retrieve severe convective wind (SCW) events from significant weather report data over China during the period 2010–14. The results showed that SCW events were a feature of local weather activity, and their distribution showed clear seasonal and diurnal variations. The SCW events mainly occurred over eastern China during the midafternoon in the warm season and rarely occurred over western China. The highest frequency of SCW events was recorded in north China and Guangdong Province. There was also a high frequency of SCW events in the middle and lower reaches of the Yangtze River. The most frequent occurrence of SCW events was in Guangdong Province in spring, while a high frequency of SCW events was observed in both north China and Guangdong Province during the summer months. The peak month for SCW events was July over the whole of China and June in north China. The pattern in Guangdong Province had a bimodal distribution, with the peak months being May and August. The majority of SCW events occurred between 1200 and 2000 local time.

Full access
Xinghua Bao, Fuqing Zhang, and Jianhua Sun

Abstract

This study explores the diurnal variations of the warm-season precipitation to the east of the Tibetan Plateau over China using the high-resolution NOAA/Climate Prediction Center morphing technique (CMORPH) precipitation data and the Global Forecast System (GFS) gridded analyses during mid-May to mid-August of 2003–09. Complementary to the past studies using satellite or surface observations, it is found that there are strong diurnal variations in the summertime precipitation over the focus domain to the east of the Tibetan Plateau. These diurnal precipitation cycles are strongly associated with several thermally driven regional mountain–plains solenoids due to the differential heating between the Tibetan Plateau, the highlands, the plains, and the ocean. The diurnal cycles differ substantially from region to region and during the three different month-long periods: the pre-mei-yu period (15 May–15 June), the mei-yu period (15 June–15 July), and the post-mei-yu period (15 July–15 August).

In particular, there is a substantial difference in the propagation speed and eastward extent of the peak phase of the dominant diurnal precipitation cycle that is originated from the Tibetan Plateau. This diurnal peak has a faster (slower) eastward propagation speed, the more (less) coherent propagation duration, and thus covers the longest (shortest) distance to the east during the pre-mei-yu (post-mei-yu) period than that during the mei-yu period. The differences in the mean midlatitude westerly flow and in the positioning and strength of the western Pacific subtropical high during different periods are the key factors in explaining the difference in the propagation speed and the eastward extent of this dominant diurnal precipitation cycle.

Full access
Xinlin Yang, Jianhua Sun, and Wanli Li

Abstract

The cloud-to-ground (CG) lightning data being detected by the China Lightning Detection Network between 2010 and 2013 are employed to gain insight into the spatial and temporal distribution of CG lightning in China. There are clear interannual and seasonal variations of CG lightning activity. The mean total CG and positive CG (PCG) flashes in 2010–13 are approximately 6.44 million and 0.42 million, respectively, and the mean percentage of PCG (PPCG) is 6.6%. CG and PCG flashes predominately occur during summer, with August being the peak month for CG and June for PCG. PPCG in the cold season is considerably greater than in the warm season; its maximum of 56.2% is in January and the minimum value of 4.0% is found in August. The centers of maximum mean annual CG density are scattered throughout southern China, the Sichuan basin, and the south of Jiangsu Province. The CG density in the high elevations and arid regions of western China is less than that in the low elevations and coastal regions of southeastern China. In addition, daily CG density and CG lightning days in southeastern China are greater than in northwestern China, but PPCG in western China is apparently greater than that in eastern China. Areas experiencing more than 30 CG lightning days per year are primarily south of 30°N, with 10–30 lightning days per year in northern and northeastern China, and approximately 10–20 lightning days per year over the central Tibetan Plateau.

Full access
Yanan Meng, Jianhua Sun, Yuanchun Zhang, and Shenming Fu

Abstract

Hourly blackbody temperature data from the warm seasons (May–September) of 2009–18 were used to detect mesoscale convective systems (MCSs) generated in the southwest mountain area (elevation ≥ 500 m) of China. A total of 3059 MCSs were grouped into four categories (C1, C2, C3, and C4) according to their generation positions using K-means clustering. Major characteristics of the four types of MCSs and their synoptic environmental conditions were investigated. The MCSs had a peak in July and a minimum in May, and usually lasted from 3 to 21 h. The C1 MCSs generated in the northeast of the Tibetan Plateau developed faster, were largest, and had a longer lifespan. The C2 and C4 MCSs had greater intensity and were initiated in the southeast of the Tibetan Plateau and the west of the Yungui Plateau, and near the Wuling and Xuefeng Mountains, respectively. The C3 MCSs initiated in the Qinling, Ta-pa, and Wushan Mountains were smallest. The C1 and C2 MCSs contributed more than 30% to total precipitation, which was more than the C3 and C4 MCSs (<25%), and the contribution rate of MCSs to short-duration heavy rainfall affected by local MCSs was over 60%. Composite synoptic circulations of the four types of MCSs showed several factors, including the locations and intensities of cyclones in the Bay of Bengal and high pressure in the Indochina Peninsula in the low-to-middle troposphere, and vortexes or southwesterly winds in the low-level troposphere, regulate the location and intensity of convection.

Restricted access
Yuanchun Zhang, Fuqing Zhang, Christopher A. Davis, and Jianhua Sun

Abstract

The structure and diurnal evolution of long-lived, eastward-propagating mesoscale convective vortices (MCVs) along typical summertime mei-yu fronts over the east China plains are investigated through composite analysis of a 30-day semi-idealized simulation. The simulation uses lateral boundary conditions that vary only diurnally in time using analyses of recurring MCV events during 1–10 July 2007. Hence, the behavior of convection and vorticity follows a closely repeating diurnal cycle for each day during the simulation. Assisted by the eastward extension of enhanced vorticity anomalies from the Sichuan basin, the incipient MCV forms in the morning hours over the immediate lee (east) of the central China mountain ranges (stage 1). From local afternoon to early evening, as the MCV moves over the plains, convection weakens in the daytime downward branch of the mountain–plains solenoid. This allows the upper-level and lower-level portions of the vortex to partially decouple, and for convection to shift to the east-southeast side of the surface vortex (stage 2). Immediately after sunset, convection reinvigorates above the low-level MCV center as a result of moistening and destabilization from a combination of radiative forcing and an intensified low-level jet. This intensifies the MCV to maturity (stage 3). The mature MCV eventually evolves into an occluding subsynoptic cyclone with strong convection across all sectors of the low-level vorticity center during the subsequent day’s morning hours along the east China coastal plains before it moves offshore (stage 4).

Full access
Shen-Ming Fu, Rui-Xin Liu, and Jian-Hua Sun

Abstract

Persistent heavy rainfall events (PHREs) are the product of the combined effects of multiscale systems. A PHRE that occurred during the 2016 mei-yu season was selected to further the understanding of the scale interactions accounting for the persistence of this type of event. The scale interactions were analyzed quantitatively using a piecewise energy budget based on temporal scale separation. Results show that the strongest interactions between the precipitation-related eddy flow and its background circulation (BC) occur in the mid- to lower troposphere, where a significant downscale kinetic energy (KE) cascade alone dominates eddy flow persistence. An obvious upscale KE cascade (i.e., a feedback effect) appears in the mid- to upper troposphere but has a negligible effect on the BC. Overall, within the precipitation region, the downscale KE cascade is primarily dependent on BC signals with shorter periods, whereas the upscale KE cascade is more dependent on BC signals with longer periods. Thus, the BC has asymmetric effects on the KE cascades. The most significant BC signal as determined via wavelet analysis [i.e., quasi-biweekly (10–18 days) oscillations in this event] does not play the leading role in the downscale KE cascade. Instead, the quasi-weekly oscillations provide the maximum amount of energy for eddy flow maintenance. Semi-idealized simulations of various BC signals show similar results: precipitation and the intensities of lower-level shear lines and transversal troughs (both of which are closely related to the precipitation-related eddy flow) are more sensitive to the quasi-weekly oscillation than to the quasi-biweekly oscillation.

Full access
Cui Liu, Jianhua Sun, Xinlin Yang, Shuanglong Jin, and Shenming Fu

Abstract

Precipitation forecasts from the ECMWF model from March to September during 2015–2018 were evaluated using observed precipitation at 2411 stations from the China Meteorological Administration. To eliminate the influence of varying climatology in different regions in China, the Stable Equitable Error in Probability Space method was used to obtain criteria for 3-h and 6-h accumulated precipitation at each station and classified precipitation into light, medium, and heavy precipitation. The model was evaluated for these categories using categorical and continuous methods. The threat score and the equitable threat score showed that the model’s forecasts of rainfall were generally more accurate at shorter lead times, and the best performance occurred in the middle and lower reaches of the Yangtze River Basin. The miss ratio for heavy precipitation was higher in the northern region than in the southern region, while heavy precipitation false alarms were more frequent in the southwestern China. Overall, the miss ratio and false alarm ratio for heavy precipitation were highest in northern China and western China, respectively. For light and medium precipitation, the model performed best in the middle and lower reaches of the Yangtze River Basin. The model predicted too much light and medium precipitation, but too little heavy precipitation. Heavy precipitation was generally underestimated over all of China, especially in the western region of China, South China, and the Yungui Plateau. Heavy precipitation was systematically underestimated because of the resolution and the related parametrization of convection.

Restricted access
Linlin Zheng, Jianhua Sun, Xiaoling Zhang, and Changhai Liu

Abstract

Composite reflectivity Doppler radar data from June to September of 2007–2010 were used to classify mesoscale convective systems (MCSs) over central east China into seven morphologies. The morphologies included one nonlinear mode (NL) and six linear modes: convective lines with no stratiform precipitation (NS), trailing stratiform precipitation (TS), leading stratiform precipitation (LS), parallel stratiform precipitation (PS), bow echoes (BE), and embedded lines (EL). Nonlinear and linear systems composed 44.7% and 55.3% of total MCSs, respectively, but there was no primary linear mode. All MCS morphologies attained their peak occurrence in July, except BE systems, which peaked in June. On average, TS and PS modes had relatively longer lifespans than did other modes.

Significant differences in MCS-produced severe weather existed between dry and moist environments. High winds and hail events were mainly observed in dry environments, and in contrast, short-term intense precipitation occurred more frequently in moist environments. BE systems generated the most severe weather on average, while most TS systems were attendant with short-term intense precipitation and high winds. EL and PS systems were most frequently associated with extreme short-time intense precipitation (≥50 mm h−1) as these systems preferentially developed in moist environments. BE systems generally occurred under strong low-level shear and intermediately moist conditions. LS systems were observed in weak low-level shear, whereas EL systems often developed in relatively stable conditions and weak low- to middle-level shear. The largest instability was present in the environment for NS systems. The environmental parameters for TS systems featured the largest differences between the dry and moist cases.

Full access