Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Jiaxu Zhang x
  • Refine by Access: All Content x
Clear All Modify Search
Liping Zhang
,
Lixin Wu
, and
Jiaxu Zhang

Abstract

Recent observation has shown that the dominant mode of the net freshwater flux variations over the North Atlantic Ocean is the significant trend of freshwater loss over the Gulf Stream region and its extension. In this paper, the coupled ocean–atmosphere response to this freshwater flux change is investigated based on a series of the Fast Ocean–Atmosphere Model coupled-model experiments. The model demonstrates that the freshwater loss over the Gulf Stream and its extension region directly forces an anomalous cyclonic gyre and triggers a SST dipole with cooling in the western subtropical and warming in the eastern subpolar North Atlantic. The freshwater loss also forces a significant response in the atmosphere with a negative NAO-like response in early winter and a basin-scale ridge resembling the eastern Atlantic mode (EAM) in late winter. The salinification also strengthens the Atlantic meridional overturning circulation and thus the poleward heat transport, leading to tropical cooling.

The freshwater loss over the Gulf Stream and its extension also leads to an El Niño–like warming in the tropical Pacific and cooling in the North Pacific, similar to the responses in previous water-hosing experiments with an input of freshwater in the subpolar North Atlantic. The tropical Pacific responses subsequently strengthen the Northern Hemispheric atmospheric anomalies in early winter, but reverse them in late winter through an emanation of Rossby wave trains. Overall, the tropical Pacific air–sea coupling plays a damping role, while local air–sea coupling tends to enhance the ocean and atmospheric responses over the North Atlantic.

Full access
Liping Zhang
,
Lixin Wu
, and
Jiaxu Zhang

Abstract

Observations have indicated a trend of freshwater loss in the global western boundary current extension regions over several recent decades. In this paper, the coupled ocean–atmosphere response to the observed freshwater flux trend [defined as evaporation minus precipitation (EmP)] over the Kuroshio–Oyashio Extension (KOE) region is studied in a series of coupled model experiments. The model explicitly demonstrates that the positive EmP forcing in the KOE region can set up a cyclonic gyre straddling the subtropical and the subpolar gyre, which induces anomalous southward cold advection in the west and northward warm advection in the interior. This leads to the formation of a temperature dipole in the midlatitudes with a cooling in the west and a warming in the east. With the positive EmP forcing in the KOE, the response of the extratropical atmospheric circulation in the North Pacific sector is characterized by an equivalent barotropic low originating primarily from the western tropical Pacific changes and countered by the extratropical SST forcing. The positive EmP forcing also strengthens the tropical zonal SST gradient and thus ENSO through several competing processes including the surface-coupled wind–evaporative–SST (WES) mechanism, subduction of extratropical warm anomalies, and spinup of the density-driven meridional overturning circulation. Applications to recent Pacific climate changes are discussed.

Full access
Lixin Wu
,
Yan Sun
,
Jiaxu Zhang
,
Liping Zhang
, and
Shoshiro Minobe

Abstract

The coupled ocean–atmosphere responses to idealized freshwater forcing in the western tropical Pacific are studied using a fully coupled climate model. The model explicitly demonstrates that freshwater forcing in the western tropical Pacific can lead to a basinwide response with the pattern resembling the Pacific decadal oscillation. In the tropics, a negative (positive) freshwater forcing over the western tropical Pacific decreases (increases) sea surface height locally, and sets up a positive (negative) zonal pressure gradient anomaly, which accelerates (decelerates) the meridional overturning circulation and equatorial surface westward flow. This leads to an intensification (reduction) of meridional heat divergence and vertical cold advection, and thus a development of La Niña (El Niño)–like responses in the tropics. The tropical responses are further substantiated by the positive Bjerknes feedback, and subsequently force significant changes in the extratropical North Pacific through atmospheric teleconnection. The local freshwater response also reinforces the imposed forcing, forming a positive feedback loop. Applications to Pacific climate changes are discussed.

Full access
Larissa Back
,
Karen Russ
,
Zhengyu Liu
,
Kuniaki Inoue
,
Jiaxu Zhang
, and
Bette Otto-Bliesner

Abstract

This study analyzes the response of global water vapor to global warming in a series of fully coupled climate model simulations. The authors find that a roughly 7% K−1 rate of increase of water vapor with global surface temperature is robust only for rapid anthropogenic-like climate change. For slower warming that occurred naturally in the past, the Southern Ocean has time to equilibrate, producing a different pattern of surface warming, so that water vapor increases at only 4.2% K−1. This lower rate of increase of water vapor with warming is not due to relative humidity changes or differences in mean lower-tropospheric temperature. A temperature of over 80°C would be required in the Clausius–Clapeyron relationship to match the 4.2% K−1 rate of increase. Instead, the low rate of increase is due to spatially heterogeneous warming. During slower global warming, there is enhanced warming at southern high latitudes, and hence less warming in the tropics per kelvin of global surface temperature increase. This leads to a smaller global water vapor increase, because most of the atmospheric water vapor is in the tropics. A formula is proposed that applies to general warming scenarios. This study also examines the response of global-mean precipitation and the meridional profile of precipitation minus evaporation and compares the latter to thermodynamic scalings. It is found that global-mean precipitation changes are remarkably robust between rapid and slow warming. Thermodynamic scalings for the rapid- and slow-warming zonal-mean precipitation are similar, but the precipitation changes are significantly different, suggesting that circulation changes are important in driving these differences.

Full access
Wilbert Weijer
,
Milena Veneziani
,
Jaclyn Clement Kinney
,
Wieslaw Maslowski
,
Jiaxu Zhang
, and
Michael Steele
Open access
Wei Cheng
,
Wilbert Weijer
,
Who M. Kim
,
Gokhan Danabasoglu
,
Steve G. Yeager
,
Peter R. Gent
,
Dongxiao Zhang
,
John C. H. Chiang
, and
Jiaxu Zhang

Abstract

Evidence for the assumptions of the salt-advection feedback in box models is sought by studying the Atlantic meridional overturning circulation (AMOC) internal variability in the long preindustrial control runs of two Earth system models. The first assumption is that AMOC strength is proportional to the meridional density difference between the North Atlantic and the Southern Oceans. The model simulations support this assumption, with the caveat that nearly all the long time-scale variability occurs in the North Atlantic density. The second assumption is that the freshwater transport variability by the overturning at the Atlantic southern boundary is controlled by the strength of AMOC. Only one of the models shows some evidence that AMOC variability at 45°N leads variability in the overturning freshwater transport at the southern boundary by about 30 years, but the other model shows no such coherence. In contrast, in both models this freshwater transport variability is dominated by local salinity variations. The third assumption is that changes in the overturning freshwater transport at the Atlantic southern boundary perturb the north–south density difference, and thus feed back on AMOC strength in the north. No evidence for this assumption is found in either model at any time scale, although this does not rule out that the salt-advection feedback may be excited by a strong enough freshwater perturbation.

Open access
Chenyu Zhu
,
Jiaxu Zhang
,
Zhengyu Liu
,
Bette L. Otto-Bliesner
,
Chengfei He
,
Esther C. Brady
,
Robert Tomas
,
Qin Wen
,
Qing Li
,
Chenguang Zhu
,
Shaoqing Zhang
, and
Lixin Wu

Abstract

Heinrich Stadial 1 (HS1) was the major climate event at the onset of the last deglaciation associated with rapid cooling in Greenland and lagged, slow warming in Antarctica. Although it is widely believed that temperature signals were triggered in the Northern Hemisphere and propagated southward associated with the Atlantic meridional overturning circulation (AMOC), understanding how these signals were able to cross the Antarctic Circumpolar Current (ACC) barrier and further warm up Antarctica has proven particularly challenging. In this study, we explore the physical processes that lead to the Antarctic warming during HS1 in a transient isotope-enabled deglacial simulation iTRACE, in which the interpolar phasing has been faithfully reproduced. We show that the increased meridional heat transport alone, first through the ocean and then through the atmosphere, can explain the Antarctic warming during the early stage of HS1 without notable changes in the strength and position of the Southern Hemisphere midlatitude westerlies. In particular, when a reduction of the AMOC causes ocean warming to the north of the ACC, increased southward ocean heat transport by mesoscale eddies is triggered by steeper isopycnals to warm up the ocean beyond the ACC, which further decreases the sea ice concentration and leads to more absorption of insolation. The increased atmospheric heat then releases to the Antarctic primarily by a strengthening zonal wavenumber-3 (ZW3) pattern. Sensitivity experiments further suggest that a ∼4°C warming caused by this mechanism superimposed on a comparable warming driven by the background atmospheric CO2 rise is able to explain the total simulated ∼8°C warming in the West Antarctica during HS1.

Open access