Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Juha-Pekka Luntama x
- Refine by Access: All Content x
The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System is the European contribution to the European–U.S. operational polar meteorological satellite system (Initial Joint Polar System). It serves the midmorning (a.m.) orbit 0930 Local Solar Time (LST) descending node. The EUMETSAT satellites of this new polar system are the Meteorological Operational Satellite (Metop) satellites, jointly developed with ESA. Three Metop satellites are foreseen for at least 14 years of operation from 2006 onward and will support operational meteorology and climate monitoring.
The Metop Programme includes the development of some instruments, such as the Global Ozone Monitoring Experiment, Advanced Scatterometer, and the Global Navigation Satellite System (GNSS) Receiver for Atmospheric Sounding, which are advanced instruments of recent successful research missions. Core components of the Metop payload, common with the payload on the U.S. satellites, are the Advanced Very High Resolution Radiometer and the Advanced Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (ATOVS) package, composed of the High Resolution Infrared Radiation Sounder (HIRS), Advanced Microwave Sounding Unit A (AMSU-A), and Microwave Humidity Sounder (MHS). They provide continuity to the NOAA-K, -L, -M satellite series (in orbit known as NOAA-15, -16 and -17). MHS is a EUMETSAT development and replaces the AMSU-B instrument in the ATOVS suite. The Infrared Atmospheric Sounding Interferometer (IASI) instrument, developed by the Centre National d'Etudes Spatiales, provides hyperspectral resolution infrared sounding capabilities and represents new technology in operational satellite remote sensing.
The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System is the European contribution to the European–U.S. operational polar meteorological satellite system (Initial Joint Polar System). It serves the midmorning (a.m.) orbit 0930 Local Solar Time (LST) descending node. The EUMETSAT satellites of this new polar system are the Meteorological Operational Satellite (Metop) satellites, jointly developed with ESA. Three Metop satellites are foreseen for at least 14 years of operation from 2006 onward and will support operational meteorology and climate monitoring.
The Metop Programme includes the development of some instruments, such as the Global Ozone Monitoring Experiment, Advanced Scatterometer, and the Global Navigation Satellite System (GNSS) Receiver for Atmospheric Sounding, which are advanced instruments of recent successful research missions. Core components of the Metop payload, common with the payload on the U.S. satellites, are the Advanced Very High Resolution Radiometer and the Advanced Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (ATOVS) package, composed of the High Resolution Infrared Radiation Sounder (HIRS), Advanced Microwave Sounding Unit A (AMSU-A), and Microwave Humidity Sounder (MHS). They provide continuity to the NOAA-K, -L, -M satellite series (in orbit known as NOAA-15, -16 and -17). MHS is a EUMETSAT development and replaces the AMSU-B instrument in the ATOVS suite. The Infrared Atmospheric Sounding Interferometer (IASI) instrument, developed by the Centre National d'Etudes Spatiales, provides hyperspectral resolution infrared sounding capabilities and represents new technology in operational satellite remote sensing.
Global Navigation Satellite System (GNSS) Receiver for Atmospheric Sounding (GRAS) is a radio occupation instrument especially designed and built for operational meteorological missions. GRAS has been developed by the European Space Agency (ESA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) in the framework of the EUMETSAT Polar System (EPS). The GRAS instrument is already flying on board the first MetOp satellite (.MetOp-A) that was launched in October 2006. It will also be on board two other MetOp satellites (MetOp-B and MetOp-C) that will successively cover the total EPS mission lifetime of over 14 yr. GRAS provides daily about 600 globally distributed occultation measurements and the GRAS data products are disseminated to the users in near-real time (NRT) so that they can be assimilated into numerical weather prediction (NWP) systems. All GRAS data and products are permanently archived and made available to the users for climate applications and scientific research through the EUMETSAT Unified Meteorological Archive and Retrieval Facility (U-MARF) and the GRAS Meteorology Satellite Application Facility (SAF) Archive and Retrieval Facility (GARF). The GRAS navigation data can be used in space weather applications.
Global Navigation Satellite System (GNSS) Receiver for Atmospheric Sounding (GRAS) is a radio occupation instrument especially designed and built for operational meteorological missions. GRAS has been developed by the European Space Agency (ESA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) in the framework of the EUMETSAT Polar System (EPS). The GRAS instrument is already flying on board the first MetOp satellite (.MetOp-A) that was launched in October 2006. It will also be on board two other MetOp satellites (MetOp-B and MetOp-C) that will successively cover the total EPS mission lifetime of over 14 yr. GRAS provides daily about 600 globally distributed occultation measurements and the GRAS data products are disseminated to the users in near-real time (NRT) so that they can be assimilated into numerical weather prediction (NWP) systems. All GRAS data and products are permanently archived and made available to the users for climate applications and scientific research through the EUMETSAT Unified Meteorological Archive and Retrieval Facility (U-MARF) and the GRAS Meteorology Satellite Application Facility (SAF) Archive and Retrieval Facility (GARF). The GRAS navigation data can be used in space weather applications.