Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Kelly T. Redmond x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Michael J. Janis
,
Kenneth G. Hubbard
, and
Kelly T. Redmond

Abstract

The National Oceanic and Atmospheric Administration is establishing the U.S. Climate Reference Network (CRN) to improve the capacity for observing climatic change and variability. A goal of this network is to provide homogeneous observations of temperature and precipitation from benchmark stations that can be coupled with historical observations for detection and attribution of climatic change. The purpose of this study was to estimate the number and distribution of U.S. CRN observing sites. The analysis was conducted by forming hypothetical networks from representative subsamples of stations in an existing higher-density baseline network. The objective was to have the differences between the annual temperature and precipitation trends computed from reduced-size networks and the full-size networks not greater than predetermined error limits. This analysis was performed on a grid cell basis to incorporate the expectation that a greater station density would be required to achieve the monitoring goals in areas with greater spatial gradients in trends. Monte Carlo resampling techniques were applied to stations within 2.5° latitude × 3.5° longitude grid cells to successively lower the resolution compared to that in the reference or baseline network. Differences between 30-yr trends from lower-resolution networks and full-resolution networks were generated for each grid cell. Grid cell densities were determined separately for temperature and precipitation trends. In practice densities can be derived for any parameter and monitoring goal. A network of 327 stations for the contiguous United States satisfied a combined temperature-trend goal of 0.10°C decade−1 and a precipitation-trend goal of 2.0% of median precipitation per decade.

Full access
Daniel R. Cayan
,
Kelly T. Redmond
, and
Laurence G. Riddle

Abstract

Frequency distributions of daily precipitation in winter and daily stream flow from late winter to early summer, at several hundred sites in the western United States, exhibit strong and systematic responses to the two phases of ENSO. Most of the stream flows considered are driven by snowmelt. The Southern Oscillation index (SOI) is used as the ENSO phase indicator. Both modest (median) and larger (90th percentile) events were considered. In years with negative SOI values (El Niño), days with high daily precipitation and stream flow are more frequent than average over the Southwest and less frequent over the Northwest. During years with positive SOI values (La Niña), a nearly opposite pattern is seen. A more pronounced increase is seen in the number of days exceeding climatological 90th percentile values than in the number exceeding climatological 50th percentile values, for both precipitation and stream flow. Stream flow responses to ENSO extremes are accentuated over precipitation responses. Evidence suggests that the mechanism for this amplification involves ENSO-phase differences in the persistence and duration of wet episodes, affecting the efficiency of the process by which precipitation is converted to runoff. The SOI leads the precipitation events by several months, and hydrologic lags (mostly through snowmelt) delay the stream flow response by several more months. The combined 6–12-month predictive aspect of this relationship should be of significant benefit in responding to flood (or drought) risk and in improving overall water management in the western states.

Full access