Search Results
You are looking at 1 - 10 of 10 items for
- Author or Editor: Kyle R. Clem x
- Refine by Access: All Content x
Abstract
Significant austral spring trends have previously been observed in West Antarctica and Antarctic Peninsula temperatures and in atmospheric circulation across the southern Pacific and Atlantic. Here, physical mechanisms for the observed trends are investigated through analysis of monthly circulation and temperatures from the ERA-Interim dataset and outgoing longwave radiation (OLR) data. The negative pressure trend over the South Pacific during spring is strongest in September, while the positive pressure trend over the South Atlantic is strongest in October. Pressure trends in November are generally nonsignificant. The authors demonstrate that a significant September trend toward increased convection (reduced OLR) in the poleward portion of the South Pacific convergence zone (SPCZ) is statistically related to Rossby wave–like circulation changes across the southern oceans. The wave response is strongest over the South Pacific in September and propagates eastward to the South Atlantic in October. OLR-related changes are linearly congruent with around half of the observed total changes in circulation during September and October and are consistent with observed trends in South Pacific sea ice concentration and surface temperature over western West Antarctica and the western Antarctic Peninsula. These results suggest SPCZ variability in early spring, especially on the poleward side of the SPCZ, is an important contributor to circulation and surface temperature trends across the South Pacific/Atlantic and West Antarctica.
Abstract
Significant austral spring trends have previously been observed in West Antarctica and Antarctic Peninsula temperatures and in atmospheric circulation across the southern Pacific and Atlantic. Here, physical mechanisms for the observed trends are investigated through analysis of monthly circulation and temperatures from the ERA-Interim dataset and outgoing longwave radiation (OLR) data. The negative pressure trend over the South Pacific during spring is strongest in September, while the positive pressure trend over the South Atlantic is strongest in October. Pressure trends in November are generally nonsignificant. The authors demonstrate that a significant September trend toward increased convection (reduced OLR) in the poleward portion of the South Pacific convergence zone (SPCZ) is statistically related to Rossby wave–like circulation changes across the southern oceans. The wave response is strongest over the South Pacific in September and propagates eastward to the South Atlantic in October. OLR-related changes are linearly congruent with around half of the observed total changes in circulation during September and October and are consistent with observed trends in South Pacific sea ice concentration and surface temperature over western West Antarctica and the western Antarctic Peninsula. These results suggest SPCZ variability in early spring, especially on the poleward side of the SPCZ, is an important contributor to circulation and surface temperature trends across the South Pacific/Atlantic and West Antarctica.
Abstract
Using empirical orthogonal function (EOF) analysis and atmospheric reanalyses, the principal patterns of seasonal West Antarctic surface air temperature (SAT) and their connection to sea ice and the Amundsen Sea low (ASL) are examined. During austral summer, the leading EOF (EOF1) explains 35% of West Antarctic SAT variability and consists of a widespread SAT anomaly over the continent linked to persistent sea ice concentration anomalies over the Ross and Amundsen Seas from the previous spring. Outside of summer, EOF1 (explaining ~40%–50% of the variability) consists of an east–west dipole over the continent with SAT anomalies over the Antarctic Peninsula opposite those over western West Antarctica. The dipole is tied to variability in the southern annular mode (SAM) and in-phase El Niño–Southern Oscillation (ENSO)/SAM combinations that influence the depth of the ASL over the central Amundsen Sea (near 105°W). The second EOF (EOF2) during autumn, winter, and spring (explaining ~15%–20% of the variability) consists of a dipole shifted approximately 30° west of EOF1 with a widespread SAT anomaly over the continent. During winter and spring, EOF2 is closely tied to variability in ENSO and a tropically forced wave train that influences the ASL in the western Amundsen/eastern Ross Seas (near 135°W) with an opposite-sign circulation anomaly over the Weddell Sea; the ENSO-related circulation brings anomalous thermal advection deep onto the continent. The authors conclude that the ENSO-only circulation pattern is associated with SAT variability across interior West Antarctica, especially during winter and spring, whereas the SAM circulation pattern is associated with an SAT dipole over the continent.
Abstract
Using empirical orthogonal function (EOF) analysis and atmospheric reanalyses, the principal patterns of seasonal West Antarctic surface air temperature (SAT) and their connection to sea ice and the Amundsen Sea low (ASL) are examined. During austral summer, the leading EOF (EOF1) explains 35% of West Antarctic SAT variability and consists of a widespread SAT anomaly over the continent linked to persistent sea ice concentration anomalies over the Ross and Amundsen Seas from the previous spring. Outside of summer, EOF1 (explaining ~40%–50% of the variability) consists of an east–west dipole over the continent with SAT anomalies over the Antarctic Peninsula opposite those over western West Antarctica. The dipole is tied to variability in the southern annular mode (SAM) and in-phase El Niño–Southern Oscillation (ENSO)/SAM combinations that influence the depth of the ASL over the central Amundsen Sea (near 105°W). The second EOF (EOF2) during autumn, winter, and spring (explaining ~15%–20% of the variability) consists of a dipole shifted approximately 30° west of EOF1 with a widespread SAT anomaly over the continent. During winter and spring, EOF2 is closely tied to variability in ENSO and a tropically forced wave train that influences the ASL in the western Amundsen/eastern Ross Seas (near 135°W) with an opposite-sign circulation anomaly over the Weddell Sea; the ENSO-related circulation brings anomalous thermal advection deep onto the continent. The authors conclude that the ENSO-only circulation pattern is associated with SAT variability across interior West Antarctica, especially during winter and spring, whereas the SAM circulation pattern is associated with an SAT dipole over the continent.
Abstract
We calculate a regional surface “melt potential” index (MPI) over Antarctic ice shelves that describes the frequency (MPI-freq; %) and intensity (MPI-int; K) of daily maximum summer temperatures exceeding a melt threshold of 273.15 K. This is used to determine which ice shelves are vulnerable to melt-induced hydrofracture and is calculated using near-surface temperature output for each summer from 1979/80 to 2018/19 from two high-resolution regional atmospheric model hindcasts (using the MetUM and HIRHAM5). MPI is highest for Antarctic Peninsula ice shelves (MPI-freq 23%–35%, MPI-int 1.2–2.1 K), lowest (2%–3%, <0 K) for the Ronne–Filchner and Ross ice shelves, and around 10%–24% and 0.6–1.7 K for the other West and East Antarctic ice shelves. Hotspots of MPI are apparent over many ice shelves, and they also show a decreasing trend in MPI-freq. The regional circulation patterns associated with high MPI values over West and East Antarctic ice shelves are remarkably consistent for their respective region but tied to different large-scale climate forcings. The West Antarctic circulation resembles the central Pacific El Niño pattern with a stationary Rossby wave and a strong anticyclone over the high-latitude South Pacific. By contrast, the East Antarctic circulation comprises a zonally symmetric negative Southern Annular Mode pattern with a strong regional anticyclone on the plateau and enhanced coastal easterlies/weakened Southern Ocean westerlies. Values of MPI are 3–4 times larger for a lower temperature/melt threshold of 271.15 K used in a sensitivity test, as melting can occur at temperatures lower than 273.15 K depending on snowpack properties.
Abstract
We calculate a regional surface “melt potential” index (MPI) over Antarctic ice shelves that describes the frequency (MPI-freq; %) and intensity (MPI-int; K) of daily maximum summer temperatures exceeding a melt threshold of 273.15 K. This is used to determine which ice shelves are vulnerable to melt-induced hydrofracture and is calculated using near-surface temperature output for each summer from 1979/80 to 2018/19 from two high-resolution regional atmospheric model hindcasts (using the MetUM and HIRHAM5). MPI is highest for Antarctic Peninsula ice shelves (MPI-freq 23%–35%, MPI-int 1.2–2.1 K), lowest (2%–3%, <0 K) for the Ronne–Filchner and Ross ice shelves, and around 10%–24% and 0.6–1.7 K for the other West and East Antarctic ice shelves. Hotspots of MPI are apparent over many ice shelves, and they also show a decreasing trend in MPI-freq. The regional circulation patterns associated with high MPI values over West and East Antarctic ice shelves are remarkably consistent for their respective region but tied to different large-scale climate forcings. The West Antarctic circulation resembles the central Pacific El Niño pattern with a stationary Rossby wave and a strong anticyclone over the high-latitude South Pacific. By contrast, the East Antarctic circulation comprises a zonally symmetric negative Southern Annular Mode pattern with a strong regional anticyclone on the plateau and enhanced coastal easterlies/weakened Southern Ocean westerlies. Values of MPI are 3–4 times larger for a lower temperature/melt threshold of 271.15 K used in a sensitivity test, as melting can occur at temperatures lower than 273.15 K depending on snowpack properties.
Abstract
Between March 15-19, 2022, East Antarctica experienced an exceptional heatwave with widespread 30-40° C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) which caused these record-shattering temperature anomalies. Here in Part II, we continue our large, collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall.
These impacts included widespread rain and surface melt which was recorded along coastal areas, but this was outweighed by widespread, high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Finally, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea-ice extent.
Abstract
Between March 15-19, 2022, East Antarctica experienced an exceptional heatwave with widespread 30-40° C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) which caused these record-shattering temperature anomalies. Here in Part II, we continue our large, collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall.
These impacts included widespread rain and surface melt which was recorded along coastal areas, but this was outweighed by widespread, high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Finally, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea-ice extent.
Abstract
Between March 15-19, 2022, East Antarctica experienced an exceptional heatwave with widespread 30-40° C temperature anomalies across the ice sheet. This record-shattering event saw numerous monthly temperature records being broken including a new all-time temperature record of -9.4° C on March 18 at Concordia Station despite March typically being a transition month to the Antarctic coreless winter. The driver for these temperature extremes was an intense atmospheric river advecting subtropical/mid-latitude heat and moisture deep into the Antarctic interior. The scope of the temperature records spurred a large, diverse collaborative effort to study the heatwaves meteorological drivers, impacts, and historical climate context.
Here we focus on describing those temperature records along with the intricate meteorological drivers that led to the most intense atmospheric river observed over East Antarctica. These efforts describe the Rossby wave activity forced from intense tropical convection over the Indian Ocean. This led to an atmospheric river and warm conveyor belt intensification near the coastline which reinforced atmospheric blocking deep into East Antarctica. The resulting moisture flux and upper-level warm air advection eroded the typical surface temperature inversions over the ice sheet. At the peak of the heatwave, an area of 3.3 million km2 in East Antarctica exceeded previous March monthly temperature records. Despite a temperature anomaly return time of about one hundred years, a closer recurrence of such an event is possible under future climate projections. In a subsequent manuscript, we describe the various impacts this extreme event had on the East Antarctic cryosphere.
Abstract
Between March 15-19, 2022, East Antarctica experienced an exceptional heatwave with widespread 30-40° C temperature anomalies across the ice sheet. This record-shattering event saw numerous monthly temperature records being broken including a new all-time temperature record of -9.4° C on March 18 at Concordia Station despite March typically being a transition month to the Antarctic coreless winter. The driver for these temperature extremes was an intense atmospheric river advecting subtropical/mid-latitude heat and moisture deep into the Antarctic interior. The scope of the temperature records spurred a large, diverse collaborative effort to study the heatwaves meteorological drivers, impacts, and historical climate context.
Here we focus on describing those temperature records along with the intricate meteorological drivers that led to the most intense atmospheric river observed over East Antarctica. These efforts describe the Rossby wave activity forced from intense tropical convection over the Indian Ocean. This led to an atmospheric river and warm conveyor belt intensification near the coastline which reinforced atmospheric blocking deep into East Antarctica. The resulting moisture flux and upper-level warm air advection eroded the typical surface temperature inversions over the ice sheet. At the peak of the heatwave, an area of 3.3 million km2 in East Antarctica exceeded previous March monthly temperature records. Despite a temperature anomaly return time of about one hundred years, a closer recurrence of such an event is possible under future climate projections. In a subsequent manuscript, we describe the various impacts this extreme event had on the East Antarctic cryosphere.
Abstract
—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES
Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.
In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.
Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.
While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.
The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.
In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.
In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.
Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.
A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.
As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.
In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.
On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
Abstract
—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES
Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.
In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.
Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.
While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.
The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.
In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.
In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.
Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.
A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.
As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.
In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.
On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.