Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ling Qu x
  • All content x
Clear All Modify Search
Tzu-Ling Chiang and Tangdong Qu


Sporadic in situ observations have shown evidence that subthermocline eddies exist off the Mindanao coast. These subthermocline eddies are believed to play an important role in the heat, freshwater, and other ocean property transports of the region, but their characteristics and in particular their pathway and source of energy are poorly explored because of the lack of long-term observations. Analysis of results from an eddy-resolving general ocean circulation model has revealed that most subthermocline eddies off the Mindanao coast originate from the equatorial South Pacific Ocean to the west of the Ninigo Group. These eddies propagate northward along the New Guinea coast, cross the equator in the far western Pacific, and reach the Mindanao coast at a typical propagation speed of ~0.12 m s−1. The dominant time scales of these eddies range between 50 and 60 days.

Full access
Shuang-Xi Guo, Xian-Rong Cen, Ling Qu, Yuan-Zheng Lu, Peng-Qi Huang, and Sheng-Qi Zhou


Flow speed past the measuring probe is definitely needed for the estimation of the turbulent kinetic energy dissipation rates ε and temperature dissipation rates χ based on the Taylor frozen hypothesis. This speed is usually measured with current instruments. Occasional failed work of these instruments may lead to unsuccessful speed measurement. For example, low concentration of suspended particles in water could make the observed speed invalid when using acoustic measuring instruments. In this study, we propose an alternative approach for quantifying the flow speeds by only using the microstructure shear or temperature data, according to the spectral theories of the inertial and dissipation subranges. A dataset of the microstructure profiler, vertical microstructure profiler (VMP), collected in the South China Sea (SCS) during 2017, is used to describe this approach, and the inferred speeds are compared with the actual passing-probe speeds, i.e., the falling speeds of the VMP. Probability density functions (PDFs) of the speed ratios, i.e., the ratios of the speeds respectively inferred from the inertial and dissipation subranges of the shear and temperature spectra to the actual speeds, follow the lognormal distribution, with corresponding mean values of 1.32, 1.03, 1.56, and 1.43, respectively. This result indicates that the present approach for quantifying the flow speeds is valid, and the speeds inferred from the dissipation subrange of shear spectrum agree much better with the actual ones than those from the inertial subrange of shear spectrum and the inertial and dissipation subranges of temperature spectrum. The present approach may be complementary and useful in the evaluation of turbulent mixing when the directly observed speeds are unavailable.

Restricted access