Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Lisa Dilling x
- Refine by Access: All Content x
Abstract
Significant effort has been put into advancing the use and usability of information products to support adaptation to drought and climate variability, particularly for the water supply sector. Evidence and experience show that advancing the usability of information through processes such as coproduction is time consuming for both providers and users of information. One challenge for boundary organizations and researchers interested in enhancing the usability of their information is how such processes might “scale” to all the potential organizations and individual managers that might possibly be able to benefit from improved climate information. This paper examines information use preferences and practices specifically among managers of small water systems in the Upper Colorado River basin, with an eye toward identifying new opportunities to effectively scale information usability and uptake among all water managers—regardless of location or capacity—in a resource-constrained world. We find that boundary organizations and other usable science efforts would benefit from capitalizing on the communities of practice that bind water managers together. Specifically, strategic engagement with larger, well-respected water systems as early adopters, supporting dissemination of successes and experiences with new information products among a broader community of water managers, and increasing well-respected water systems’ capacity to engage directly with rural systems may all serve as useful strategies to promote widespread distribution, access, and adoption of information.
Abstract
Significant effort has been put into advancing the use and usability of information products to support adaptation to drought and climate variability, particularly for the water supply sector. Evidence and experience show that advancing the usability of information through processes such as coproduction is time consuming for both providers and users of information. One challenge for boundary organizations and researchers interested in enhancing the usability of their information is how such processes might “scale” to all the potential organizations and individual managers that might possibly be able to benefit from improved climate information. This paper examines information use preferences and practices specifically among managers of small water systems in the Upper Colorado River basin, with an eye toward identifying new opportunities to effectively scale information usability and uptake among all water managers—regardless of location or capacity—in a resource-constrained world. We find that boundary organizations and other usable science efforts would benefit from capitalizing on the communities of practice that bind water managers together. Specifically, strategic engagement with larger, well-respected water systems as early adopters, supporting dissemination of successes and experiences with new information products among a broader community of water managers, and increasing well-respected water systems’ capacity to engage directly with rural systems may all serve as useful strategies to promote widespread distribution, access, and adoption of information.
Abstract
Unintended consequences from decisions made in one part of a social–ecological system in response to climate hazards can magnify vulnerabilities for others in the same system. Yet anticipating or identifying these cascades and spillovers in real time is difficult. Social learning is an important component of adaptation that has the ability to facilitate adaptive capacity by mobilizing multiple actors around a common resource to manage collectively in ways that build local knowledge, reflective practices, and a broader understanding of contexts for decisions. While the foundations of social learning in resource management have been theorized in the literature, empirical examples of unintended consequences that trigger social learning are few. This article analyzes two cases of drought decisions made along the Arkansas River basin in Colorado; in each, social learning occurred after actors experienced unanticipated impacts from others’ decisions. Methods include interviews with actors, both individual and institutional representatives of different sectors (recreation, agriculture, etc.), and a review of relevant historical and policy documents. The study identifies four features of social learning that aided actors’ responses to unanticipated consequences: governance structures that facilitated more holistic river management; relationship boundaries that expanded beyond small-scale decisions to capture interactions and emergent problems; knowledge of others’ previous experience, whether direct or indirect; and creation of spaces for safer experimentation with adaptation changes. Results identify empirical examples of actors who successfully learned to adapt together to unexpected consequences and thus may provide insight for others collectively managing drought extremes.
Abstract
Unintended consequences from decisions made in one part of a social–ecological system in response to climate hazards can magnify vulnerabilities for others in the same system. Yet anticipating or identifying these cascades and spillovers in real time is difficult. Social learning is an important component of adaptation that has the ability to facilitate adaptive capacity by mobilizing multiple actors around a common resource to manage collectively in ways that build local knowledge, reflective practices, and a broader understanding of contexts for decisions. While the foundations of social learning in resource management have been theorized in the literature, empirical examples of unintended consequences that trigger social learning are few. This article analyzes two cases of drought decisions made along the Arkansas River basin in Colorado; in each, social learning occurred after actors experienced unanticipated impacts from others’ decisions. Methods include interviews with actors, both individual and institutional representatives of different sectors (recreation, agriculture, etc.), and a review of relevant historical and policy documents. The study identifies four features of social learning that aided actors’ responses to unanticipated consequences: governance structures that facilitated more holistic river management; relationship boundaries that expanded beyond small-scale decisions to capture interactions and emergent problems; knowledge of others’ previous experience, whether direct or indirect; and creation of spaces for safer experimentation with adaptation changes. Results identify empirical examples of actors who successfully learned to adapt together to unexpected consequences and thus may provide insight for others collectively managing drought extremes.
Abstract
Few currently deny that extreme weather and climate change are among the most pressing problems of our times. There is also general agreement that humans are intrinsically part of the problem and of the solution. For the past hundred years, the American Meteorological Society (AMS) has supported weather and climate science, but only recently has it included the social sciences. In this chapter we review a few trends in the social science of climatic impact currently informing understanding of human interactions with weather, hazards, and climate change, including the science of science use, vulnerability and adaptation, and climatic change, health, and security. We argue that the social sciences have been steadily growing within AMS journals and have made an impact on the field (especially after the launching of a specific journal focusing on impact—Weather, Climate, and Society) but still have much room to grow within AMS to represent the many areas of social studies of weather and climate in the literature. One grand challenge that remains is to increase the usability and use of AMS-produced knowledge to inform decision-making in mitigating and responding to climatic change.
Abstract
Few currently deny that extreme weather and climate change are among the most pressing problems of our times. There is also general agreement that humans are intrinsically part of the problem and of the solution. For the past hundred years, the American Meteorological Society (AMS) has supported weather and climate science, but only recently has it included the social sciences. In this chapter we review a few trends in the social science of climatic impact currently informing understanding of human interactions with weather, hazards, and climate change, including the science of science use, vulnerability and adaptation, and climatic change, health, and security. We argue that the social sciences have been steadily growing within AMS journals and have made an impact on the field (especially after the launching of a specific journal focusing on impact—Weather, Climate, and Society) but still have much room to grow within AMS to represent the many areas of social studies of weather and climate in the literature. One grand challenge that remains is to increase the usability and use of AMS-produced knowledge to inform decision-making in mitigating and responding to climatic change.
Abstract
In recent years increasing attention has been focused on understanding the different resources that can support decision makers at all levels in responding to climate variability and change. This article focuses on the role that access to information and other potential constraints may play in the context of water decision making across three U.S. regions (the Intermountain West, the Great Lakes, and the Carolinas). The authors report on the degree to which climate-related needs or constraints pertinent to water resources are regionally specific. They also find that stakeholder-identified constraints or needs extended beyond the need for data/information to enabling factors such as governance arrangements and how to improve collaboration and communication. As climate information networks expand and emphasis is placed on encouraging adaptation more broadly, these constraints have implications not only for how information dissemination efforts are organized but for how those efforts need to be informed by the larger regional context in a resource-limited and fragmented landscape.
Abstract
In recent years increasing attention has been focused on understanding the different resources that can support decision makers at all levels in responding to climate variability and change. This article focuses on the role that access to information and other potential constraints may play in the context of water decision making across three U.S. regions (the Intermountain West, the Great Lakes, and the Carolinas). The authors report on the degree to which climate-related needs or constraints pertinent to water resources are regionally specific. They also find that stakeholder-identified constraints or needs extended beyond the need for data/information to enabling factors such as governance arrangements and how to improve collaboration and communication. As climate information networks expand and emphasis is placed on encouraging adaptation more broadly, these constraints have implications not only for how information dissemination efforts are organized but for how those efforts need to be informed by the larger regional context in a resource-limited and fragmented landscape.
Abstract
Federal investments by U.S. agencies to enhance climate resilience at regional scales grew over the past decade (2010s). To maximize efficiency and effectiveness in serving multiple sectors and scales, it has become critical to leverage existing agency-specific research, infrastructure, and capacity while avoiding redundancy. We discuss lessons learned from a multi-institutional “regional climate response collaborative” that comprises three different federally supported climate service entities in the Rocky Mountain west and northern plains region. These lessons include leveraging different strengths of each partner, creating deliberate mechanisms to increase cross-entity communication and joint ownership of projects, and placing a common priority on stakeholder-relevant research and outcomes. We share the conditions that fostered successful collaboration, which can be transferred elsewhere, and suggest mechanisms for overcoming potential barriers. Synergies are essential for producing actionable research that informs climate-related decisions for stakeholders and ultimately enhances climate resilience at regional scales.
Abstract
Federal investments by U.S. agencies to enhance climate resilience at regional scales grew over the past decade (2010s). To maximize efficiency and effectiveness in serving multiple sectors and scales, it has become critical to leverage existing agency-specific research, infrastructure, and capacity while avoiding redundancy. We discuss lessons learned from a multi-institutional “regional climate response collaborative” that comprises three different federally supported climate service entities in the Rocky Mountain west and northern plains region. These lessons include leveraging different strengths of each partner, creating deliberate mechanisms to increase cross-entity communication and joint ownership of projects, and placing a common priority on stakeholder-relevant research and outcomes. We share the conditions that fostered successful collaboration, which can be transferred elsewhere, and suggest mechanisms for overcoming potential barriers. Synergies are essential for producing actionable research that informs climate-related decisions for stakeholders and ultimately enhances climate resilience at regional scales.