Search Results
You are looking at 1 - 10 of 10 items for :
- Author or Editor: Lisan Yu x
- Bulletin of the American Meteorological Society x
- Refine by Access: All Content x
A 25-yr (1981–2005) time series of daily latent and sensible heat fluxes over the global ice-free oceans has been produced by synthesizing surface meteorology obtained from satellite remote sensing and atmospheric model reanalyses outputs. The project, named Objectively Analyzed Air–Sea Fluxes (OAFlux), was developed from an initial study of the Atlantic Ocean that demonstrated that such data synthesis improves daily flux estimates over the basin scale. This paper introduces the 25-yr heat flux analysis and documents variability of the global ocean heat flux fields on seasonal, interannual, decadal, and longer time scales suggested by the new dataset.
The study showed that, among all the climate signals investigated, the most striking is a long-term increase in latent heat flux that dominates the data record. The globally averaged latent heat flux increased by roughly 9 W m−2 between the low in 1981 and the peak in 2002, which amounted to about a 10% increase in the mean value over the 25-yr period. Positive linear trends appeared on a global scale, and were most significant over the tropical Indian and western Pacific warm pool and the boundary current regions. The increase in latent heat flux was in concert with the rise of sea surface temperature, suggesting a response of the atmosphere to oceanic forcing.
A 25-yr (1981–2005) time series of daily latent and sensible heat fluxes over the global ice-free oceans has been produced by synthesizing surface meteorology obtained from satellite remote sensing and atmospheric model reanalyses outputs. The project, named Objectively Analyzed Air–Sea Fluxes (OAFlux), was developed from an initial study of the Atlantic Ocean that demonstrated that such data synthesis improves daily flux estimates over the basin scale. This paper introduces the 25-yr heat flux analysis and documents variability of the global ocean heat flux fields on seasonal, interannual, decadal, and longer time scales suggested by the new dataset.
The study showed that, among all the climate signals investigated, the most striking is a long-term increase in latent heat flux that dominates the data record. The globally averaged latent heat flux increased by roughly 9 W m−2 between the low in 1981 and the peak in 2002, which amounted to about a 10% increase in the mean value over the 25-yr period. Positive linear trends appeared on a global scale, and were most significant over the tropical Indian and western Pacific warm pool and the boundary current regions. The increase in latent heat flux was in concert with the rise of sea surface temperature, suggesting a response of the atmosphere to oceanic forcing.
THE PIRATA PROGRAM
History, Accomplishments, and Future Directions *
The Pilot Research Moored Array in the tropical Atlantic (PIRATA) was developed as a multinational observation network to improve our knowledge and understanding of ocean-atmosphere variability in the tropical Atlantic. PIRATA was motivated by fundamental scientific issues and by societal needs for improved prediction of climate variability and its impact on the economies of West Africa, northeastern Brazil, the West Indies, and the United States. In this paper the implementation of this network is described, noteworthy accomplishments are highlighted, and the future of PIRATA in the framework of a sustainable tropical Atlantic observing system is discussed. We demonstrate that PIRATA has advanced beyond a “Pilot” program and, as such, we have redefined the PIRATA acronym to be “Prediction and Research Moored Array in the Tropical Atlantic.”
The Pilot Research Moored Array in the tropical Atlantic (PIRATA) was developed as a multinational observation network to improve our knowledge and understanding of ocean-atmosphere variability in the tropical Atlantic. PIRATA was motivated by fundamental scientific issues and by societal needs for improved prediction of climate variability and its impact on the economies of West Africa, northeastern Brazil, the West Indies, and the United States. In this paper the implementation of this network is described, noteworthy accomplishments are highlighted, and the future of PIRATA in the framework of a sustainable tropical Atlantic observing system is discussed. We demonstrate that PIRATA has advanced beyond a “Pilot” program and, as such, we have redefined the PIRATA acronym to be “Prediction and Research Moored Array in the Tropical Atlantic.”
Abstract
From 11 April to 11 June 2018 a new type of ocean observing platform, the Saildrone surface vehicle, collected data on a round-trip, 60-day cruise from San Francisco Bay, down the U.S. and Mexican coast to Guadalupe Island. The cruise track was selected to optimize the science team’s validation and science objectives. The validation objectives include establishing the accuracy of these new measurements. The scientific objectives include validation of satellite-derived fluxes, sea surface temperatures, and wind vectors and studies of upwelling dynamics, river plumes, air–sea interactions including frontal regions, and diurnal warming regions. On this deployment, the Saildrone carried 16 atmospheric and oceanographic sensors. Future planned cruises (with open data policies) are focused on improving our understanding of air–sea fluxes in the Arctic Ocean and around North Brazil Current rings.
Abstract
From 11 April to 11 June 2018 a new type of ocean observing platform, the Saildrone surface vehicle, collected data on a round-trip, 60-day cruise from San Francisco Bay, down the U.S. and Mexican coast to Guadalupe Island. The cruise track was selected to optimize the science team’s validation and science objectives. The validation objectives include establishing the accuracy of these new measurements. The scientific objectives include validation of satellite-derived fluxes, sea surface temperatures, and wind vectors and studies of upwelling dynamics, river plumes, air–sea interactions including frontal regions, and diurnal warming regions. On this deployment, the Saildrone carried 16 atmospheric and oceanographic sensors. Future planned cruises (with open data policies) are focused on improving our understanding of air–sea fluxes in the Arctic Ocean and around North Brazil Current rings.
ABSTRACT
Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-related extremes (droughts, storms, floods) caused by climate change. Understanding these changes is pivotal for developing mitigation and adaptation strategies. The Global Climate Observing System (GCOS) defines a suite of essential climate variables (ECVs), many related to the water cycle, required to systematically monitor Earth’s climate system. Since long-term observations of these ECVs are derived from different observation techniques, platforms, instruments, and retrieval algorithms, they often lack the accuracy, completeness, and resolution, to consistently characterize water cycle variability at multiple spatial and temporal scales. Here, we review the capability of ground-based and remotely sensed observations of water cycle ECVs to consistently observe the hydrological cycle. We evaluate the relevant land, atmosphere, and ocean water storages and the fluxes between them, including anthropogenic water use. Particularly, we assess how well they close on multiple temporal and spatial scales. On this basis, we discuss gaps in observation systems and formulate guidelines for future water cycle observation strategies. We conclude that, while long-term water cycle monitoring has greatly advanced in the past, many observational gaps still need to be overcome to close the water budget and enable a comprehensive and consistent assessment across scales. Trends in water cycle components can only be observed with great uncertainty, mainly due to insufficient length and homogeneity. An advanced closure of the water cycle requires improved model–data synthesis capabilities, particularly at regional to local scales.
ABSTRACT
Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-related extremes (droughts, storms, floods) caused by climate change. Understanding these changes is pivotal for developing mitigation and adaptation strategies. The Global Climate Observing System (GCOS) defines a suite of essential climate variables (ECVs), many related to the water cycle, required to systematically monitor Earth’s climate system. Since long-term observations of these ECVs are derived from different observation techniques, platforms, instruments, and retrieval algorithms, they often lack the accuracy, completeness, and resolution, to consistently characterize water cycle variability at multiple spatial and temporal scales. Here, we review the capability of ground-based and remotely sensed observations of water cycle ECVs to consistently observe the hydrological cycle. We evaluate the relevant land, atmosphere, and ocean water storages and the fluxes between them, including anthropogenic water use. Particularly, we assess how well they close on multiple temporal and spatial scales. On this basis, we discuss gaps in observation systems and formulate guidelines for future water cycle observation strategies. We conclude that, while long-term water cycle monitoring has greatly advanced in the past, many observational gaps still need to be overcome to close the water budget and enable a comprehensive and consistent assessment across scales. Trends in water cycle components can only be observed with great uncertainty, mainly due to insufficient length and homogeneity. An advanced closure of the water cycle requires improved model–data synthesis capabilities, particularly at regional to local scales.
Abstract
—J. Blunden and T. Boyer
In 2023, La Niña conditions that generally prevailed in the eastern Pacific Ocean from mid-2020 into early 2023 gave way to a strong El Niño by October. Atmospheric concentrations of Earth’s major greenhouse gases—carbon dioxide, methane, and nitrous oxide—all increased to record-high levels. The annual global average carbon dioxide concentration in the atmosphere rose to 419.3±0.1 ppm, which is 50% greater than the pre-industrial level. The growth from 2022 to 2023 was 2.8 ppm, the fourth highest in the record since the 1960s.
The combined short-term effects of El Niño and the long-term effects of increasing levels of heat-trapping gases in the atmosphere contributed to new records for many essential climate variables reported here. The annual global temperature across land and oceans was the highest in records dating as far back as 1850, with the last seven months (June–December) having each been record warm. Over land, the globally averaged temperature was also record high. Dozens of countries reported record or near-record warmth for the year, including China and continental Europe as a whole (warmest on record), India and Russia (second warmest), and Canada (third warmest). Intense and widespread heatwaves were reported around the world. In Vietnam, an all-time national maximum temperature record of 44.2°C was observed at Tuong Duong on 7 May, surpassing the previous record of 43.4°C at Huong Khe on 20 April 2019. In Brazil, the air temperature reached 44.8°C in Araçuaí in Minas Gerais on 20 November, potentially a new national record and 12.8°C above normal.
The effect of rising temperatures was apparent in the cryosphere, where snow cover extent by June 2023 was the smallest in the 56-year record for North America and seventh smallest for the Northern Hemisphere overall. Heatwaves contributed to the greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Due to rapid volume loss beginning in 2021, St. Anna Glacier in Switzerland and Ice Worm Glacier in the United States disappeared completely. In August, as a direct result of glacial thinning over the past 20 years, a glacial lake on a tributary of the Mendenhall Glacier in Alaska burst through its ice dam and caused unprecedented flooding on Mendenhall River near Juneau.
Across the Arctic, the annual surface air temperature was the fourth highest in the 124-year record, and summer (July–September) was record warm. Smaller-than-normal snow cover extent in May and June contributed to the third-highest average peak tundra greenness in the 24-year record. In September, Arctic minimum sea ice extent was the fifth smallest in the 45-year satellite record. The 17 lowest September extents have all occurred in the last 17 years.
In Antarctica, temperatures for much of the year were up to 6°C above average over the Weddell Sea and along coastal Dronning Maud Land. The Antarctic Peninsula also experienced well-above-average temperatures during the 2022/23 melt season, which contributed to its fourth consecutive summer of above-average surface melt. On 21 February, Antarctic sea ice extent and sea ice area both reached all-time lows, surpassing records set just a year earlier. Over the course of the year, new daily record-low sea ice extents were set on 278 days. In some instances, these daily records were set by a large margin, for example, the extent on 6 July was 1.8 million km2 lower than the previous record low for that day.
Across the global oceans, the annual sea surface temperature was the highest in the 170-year record, far surpassing the previous record of 2016 by 0.13°C. Daily and monthly records were set from March onward, including an historic-high daily global mean sea surface temperature of 18.99°C recorded on 22 August. Approximately 94% of the ocean surface experienced at least one marine heatwave in 2023, while 27% experienced at least one cold spell. Globally averaged ocean heat content from the surface to 2000-m depth was record high in 2023, increasing at a rate equivalent to ∼0.7 Watts per square meter of energy applied over Earth’s surface. Global mean sea level was also record high for the 12th consecutive year, reaching 101.4 mm above the 1993 average when satellite measurements began, an increase of 8.1±1.5 mm over 2022 and the third highest year-over-year increase in the record.
A total of 82 named tropical storms were observed during the Northern and Southern Hemispheres’ storm seasons, below the 1991–2020 average of 87. Hurricane Otis became the strongest landfalling hurricane on record for the west coast of Mexico at 140 kt (72 m s−1), causing at least 52 fatalities and $12–16 billion U.S. dollars in damage. Freddy became the world’s longest-lived tropical cyclones on record, developing into a tropical cyclone on 6 February and finally dissipating on 12 March. Freddy crossed the full width of the Indian Ocean and made one landfall in Madagascar and two in Mozambique. In the Mediterranean Sea—outside of traditional tropical cyclone basins—heavy rains and flooding from Storm Daniel killed more than 4300 people and left more than 8000 missing in Libya.
The record-warm temperatures in 2023 created conditions that helped intensify the hydrological cycle. Measurements of total-column water vapor in the atmosphere were the highest on record, while the fraction of cloud area in the sky was the lowest since records began in 1980. The annual global mean precipitation total over land surfaces for 2023 was among the lowest since 1979, but global one-day maximum totals were close to average, indicating an increase in rainfall intensity.
In July, record-high areas of land across the globe (7.9%) experienced extreme drought, breaking the previous record of 6.2% in July 2022. Overall, 29.7% of land experienced moderate or worse categories of drought during the year, also a record. Mexico reported its driest (and hottest) year since the start of its record in 1950. In alignment with hot and prolonged dry conditions, Canada experienced its worst national wildfire season on record. Approximately 15 million hectares burned across the country, which was more than double the previous record from 1989. Smoke from the fires were transported far into the United States and even to western European countries. August to October 2023 was the driest three-month period in Australia in the 104-year record. Millions of hectares of bushfires burned for weeks in the Northern Territory. In South America, extreme drought developed in the latter half of the year through the Amazon basin. By the end of October, the Rio Negro at Manaus, a major tributary of the Amazon River, fell to its lowest water level since records began in 1902.
The transition from La Niña to El Niño helped bring relief to the prolonged drought conditions in equatorial eastern Africa. However, El Niño along with positive Indian Ocean dipole conditions also contributed to excessive rainfall that resulted in devastating floods over southeastern Ethiopia, Somalia, and Kenya during October to December that displaced around 1.5 million people. On 5 September, the town of Zagora, Greece, broke a national record for highest daily rainfall (754 mm in 21 hours, after which the station ceased reporting) due to Storm Daniel; this one-day accumulation was close to Zagora’s normal annual total.
Abstract
—J. Blunden and T. Boyer
In 2023, La Niña conditions that generally prevailed in the eastern Pacific Ocean from mid-2020 into early 2023 gave way to a strong El Niño by October. Atmospheric concentrations of Earth’s major greenhouse gases—carbon dioxide, methane, and nitrous oxide—all increased to record-high levels. The annual global average carbon dioxide concentration in the atmosphere rose to 419.3±0.1 ppm, which is 50% greater than the pre-industrial level. The growth from 2022 to 2023 was 2.8 ppm, the fourth highest in the record since the 1960s.
The combined short-term effects of El Niño and the long-term effects of increasing levels of heat-trapping gases in the atmosphere contributed to new records for many essential climate variables reported here. The annual global temperature across land and oceans was the highest in records dating as far back as 1850, with the last seven months (June–December) having each been record warm. Over land, the globally averaged temperature was also record high. Dozens of countries reported record or near-record warmth for the year, including China and continental Europe as a whole (warmest on record), India and Russia (second warmest), and Canada (third warmest). Intense and widespread heatwaves were reported around the world. In Vietnam, an all-time national maximum temperature record of 44.2°C was observed at Tuong Duong on 7 May, surpassing the previous record of 43.4°C at Huong Khe on 20 April 2019. In Brazil, the air temperature reached 44.8°C in Araçuaí in Minas Gerais on 20 November, potentially a new national record and 12.8°C above normal.
The effect of rising temperatures was apparent in the cryosphere, where snow cover extent by June 2023 was the smallest in the 56-year record for North America and seventh smallest for the Northern Hemisphere overall. Heatwaves contributed to the greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Due to rapid volume loss beginning in 2021, St. Anna Glacier in Switzerland and Ice Worm Glacier in the United States disappeared completely. In August, as a direct result of glacial thinning over the past 20 years, a glacial lake on a tributary of the Mendenhall Glacier in Alaska burst through its ice dam and caused unprecedented flooding on Mendenhall River near Juneau.
Across the Arctic, the annual surface air temperature was the fourth highest in the 124-year record, and summer (July–September) was record warm. Smaller-than-normal snow cover extent in May and June contributed to the third-highest average peak tundra greenness in the 24-year record. In September, Arctic minimum sea ice extent was the fifth smallest in the 45-year satellite record. The 17 lowest September extents have all occurred in the last 17 years.
In Antarctica, temperatures for much of the year were up to 6°C above average over the Weddell Sea and along coastal Dronning Maud Land. The Antarctic Peninsula also experienced well-above-average temperatures during the 2022/23 melt season, which contributed to its fourth consecutive summer of above-average surface melt. On 21 February, Antarctic sea ice extent and sea ice area both reached all-time lows, surpassing records set just a year earlier. Over the course of the year, new daily record-low sea ice extents were set on 278 days. In some instances, these daily records were set by a large margin, for example, the extent on 6 July was 1.8 million km2 lower than the previous record low for that day.
Across the global oceans, the annual sea surface temperature was the highest in the 170-year record, far surpassing the previous record of 2016 by 0.13°C. Daily and monthly records were set from March onward, including an historic-high daily global mean sea surface temperature of 18.99°C recorded on 22 August. Approximately 94% of the ocean surface experienced at least one marine heatwave in 2023, while 27% experienced at least one cold spell. Globally averaged ocean heat content from the surface to 2000-m depth was record high in 2023, increasing at a rate equivalent to ∼0.7 Watts per square meter of energy applied over Earth’s surface. Global mean sea level was also record high for the 12th consecutive year, reaching 101.4 mm above the 1993 average when satellite measurements began, an increase of 8.1±1.5 mm over 2022 and the third highest year-over-year increase in the record.
A total of 82 named tropical storms were observed during the Northern and Southern Hemispheres’ storm seasons, below the 1991–2020 average of 87. Hurricane Otis became the strongest landfalling hurricane on record for the west coast of Mexico at 140 kt (72 m s−1), causing at least 52 fatalities and $12–16 billion U.S. dollars in damage. Freddy became the world’s longest-lived tropical cyclones on record, developing into a tropical cyclone on 6 February and finally dissipating on 12 March. Freddy crossed the full width of the Indian Ocean and made one landfall in Madagascar and two in Mozambique. In the Mediterranean Sea—outside of traditional tropical cyclone basins—heavy rains and flooding from Storm Daniel killed more than 4300 people and left more than 8000 missing in Libya.
The record-warm temperatures in 2023 created conditions that helped intensify the hydrological cycle. Measurements of total-column water vapor in the atmosphere were the highest on record, while the fraction of cloud area in the sky was the lowest since records began in 1980. The annual global mean precipitation total over land surfaces for 2023 was among the lowest since 1979, but global one-day maximum totals were close to average, indicating an increase in rainfall intensity.
In July, record-high areas of land across the globe (7.9%) experienced extreme drought, breaking the previous record of 6.2% in July 2022. Overall, 29.7% of land experienced moderate or worse categories of drought during the year, also a record. Mexico reported its driest (and hottest) year since the start of its record in 1950. In alignment with hot and prolonged dry conditions, Canada experienced its worst national wildfire season on record. Approximately 15 million hectares burned across the country, which was more than double the previous record from 1989. Smoke from the fires were transported far into the United States and even to western European countries. August to October 2023 was the driest three-month period in Australia in the 104-year record. Millions of hectares of bushfires burned for weeks in the Northern Territory. In South America, extreme drought developed in the latter half of the year through the Amazon basin. By the end of October, the Rio Negro at Manaus, a major tributary of the Amazon River, fell to its lowest water level since records began in 1902.
The transition from La Niña to El Niño helped bring relief to the prolonged drought conditions in equatorial eastern Africa. However, El Niño along with positive Indian Ocean dipole conditions also contributed to excessive rainfall that resulted in devastating floods over southeastern Ethiopia, Somalia, and Kenya during October to December that displaced around 1.5 million people. On 5 September, the town of Zagora, Greece, broke a national record for highest daily rainfall (754 mm in 21 hours, after which the station ceased reporting) due to Storm Daniel; this one-day accumulation was close to Zagora’s normal annual total.