Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Michael G. Bosilovich x
  • Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) x
  • All content x
Clear All Modify Search
Allison B. Marquardt Collow, Michael G. Bosilovich, and Randal D. Koster

Abstract

Observations indicate that over the last few decades there has been a statistically significant increase in precipitation in the northeastern United States and that this can be attributed to an increase in precipitation associated with extreme precipitation events. Here a state-of-the-art atmospheric reanalysis is used to examine such events in detail. Daily extreme precipitation events defined at the 75th and 95th percentile from gridded gauge observations are identified for a selected region within the Northeast. Atmospheric variables from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are then composited during these events to illustrate the time evolution of associated synoptic structures, with a focus on vertically integrated water vapor fluxes, sea level pressure, and 500-hPa heights. Anomalies of these fields move into the region from the northwest, with stronger anomalies present in the 95th percentile case. Although previous studies show tropical cyclones are responsible for the most intense extreme precipitation events, only 10% of the events in this study are caused by tropical cyclones. On the other hand, extreme events resulting from cutoff low pressure systems have increased. The time period of the study was divided in half to determine how the mean composite has changed over time. An arc of lower sea level pressure along the East Coast and a change in the vertical profile of equivalent potential temperature suggest a possible increase in the frequency or intensity of synoptic-scale baroclinic disturbances.

Full access
Franklin R. Robertson, Michael G. Bosilovich, and Jason B. Roberts

Abstract

Vertically integrated atmospheric moisture transport from ocean to land [vertically integrated atmospheric moisture flux convergence (VMFC)] is a dynamic component of the global climate system but remains problematic in atmospheric reanalyses, with current estimates having significant multidecadal global trends differing even in sign. Continual evolution of the global observing system, particularly stepwise improvements in satellite observations, has introduced discrete changes in the ability of data assimilation to correct systematic model biases, manifesting as nonphysical variability. Land surface models (LSMs) forced with observed precipitation P and near-surface meteorology and radiation provide estimates of evapotranspiration (ET). Since variability of atmospheric moisture storage is small on interannual and longer time scales, VMFC = P − ET is a good approximation and LSMs can provide an alternative estimate. However, heterogeneous density of rain gauge coverage, especially the sparse coverage over tropical continents, remains a serious concern.

Rotated principal component analysis (RPCA) with prefiltering of VMFC to isolate the artificial variability is used to investigate artifacts in five reanalysis systems. This procedure, although ad hoc, enables useful VMFC corrections over global land. The P − ET estimates from seven different LSMs are evaluated and subsequently used to confirm the efficacy of the RPCA-based adjustments. Global VMFC trends over the period 1979–2012 ranging from 0.07 to −0.03 mm day−1 decade−1 are reduced by the adjustments to 0.016 mm day−1 decade−1, much closer to the LSM P − ET estimate (0.007 mm day−1 decade−1). Neither is significant at the 90% level. ENSO-related modulation of VMFC and P − ET remains the largest global interannual signal, with mean LSM and adjusted reanalysis time series correlating at 0.86.

Full access
Michael G. Bosilovich, Franklin R. Robertson, Lawrence Takacs, Andrea Molod, and David Mocko

Abstract

Closing and balancing Earth’s global water cycle remains a challenge for the climate community. Observations are limited in duration, global coverage, and frequency, and not all water cycle terms are adequately observed. Reanalyses aim to fill the gaps through the assimilation of as many atmospheric water vapor observations as possible. Former generations of reanalyses have demonstrated a number of systematic problems that have limited their use in climate studies, especially regarding low-frequency trends. This study characterizes the NASA Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) water cycle relative to contemporary reanalyses and observations. MERRA-2 includes measures intended to minimize the spurious global variations related to inhomogeneity in the observational record. The global balance and cycling of water from ocean to land is presented, with special attention given to the water vapor analysis increment and the effects of the changing observing system. While some systematic regional biases can be identified, MERRA-2 produces temporally consistent time series of total column water and transport of water from ocean to land. However, the interannual variability of ocean evaporation is affected by the changing surface-wind-observing system, and precipitation variability is closely related to the evaporation. The surface energy budget is also strongly influenced by the interannual variability of the ocean evaporation. Furthermore, evaluating the relationship of temperature and water vapor indicates that the variations of water vapor with temperature are weaker in satellite data reanalyses, not just MERRA-2, than determined by observations, atmospheric models, or reanalyses without water vapor assimilation.

Full access
Natalie P. Thomas, Michael G. Bosilovich, Allison B. Marquardt Collow, Randal D. Koster, Siegfried D. Schubert, Amin Dezfuli, and Sarith P. Mahanama

Abstract

Heat waves are extreme climate events that have the potential to cause immense stress on human health, agriculture, and energy systems, so understanding the processes leading to their onset is crucial. There is no single accepted definition for heat waves, but they are generally described as a sustained amount of time over which temperature exceeds a local threshold. Multiple different temperature variables are potentially relevant, because high values of both daily maximum and minimum temperatures can be detrimental to human health. In this study, we focus explicitly on the different mechanisms associated with summertime heat waves manifested during daytime hours versus nighttime hours over the contiguous United States. Heat waves are examined using the National Aeronautics and Space Administration Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Over 1980–2018, the increase in the number of heat-wave days per summer was generally stronger for nighttime heat-wave days than for daytime heat-wave days, with localized regions of significant positive trends. Processes linked with daytime and nighttime heat waves are identified through composite analysis of precipitation, soil moisture, clouds, humidity, and fluxes of heat and moisture. Daytime heat waves are associated with dry conditions, reduced cloud cover, and increased sensible heating. Mechanisms leading to nighttime heat waves differ regionally across the United States, but they are typically associated with increased clouds, humidity, and/or low-level temperature advection. In the midwestern United States, enhanced moisture is transported from the Gulf of Mexico during nighttime heat waves.

Restricted access
Ronald Gelaro, Will McCarty, Max J. Suárez, Ricardo Todling, Andrea Molod, Lawrence Takacs, Cynthia A. Randles, Anton Darmenov, Michael G. Bosilovich, Rolf Reichle, Krzysztof Wargan, Lawrence Coy, Richard Cullather, Clara Draper, Santha Akella, Virginie Buchard, Austin Conaty, Arlindo M. da Silva, Wei Gu, Gi-Kong Kim, Randal Koster, Robert Lucchesi, Dagmar Merkova, Jon Eric Nielsen, Gary Partyka, Steven Pawson, William Putman, Michele Rienecker, Siegfried D. Schubert, Meta Sienkiewicz, and Bin Zhao

Abstract

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams and converged to a single near-real-time stream in mid-2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).

Full access