Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Michael J. Irvin x
- Refine by Access: All Content x
Abstract
Kites have been used as weather sensing solutions for over 250 years. The fact that they are simpler to operate and train on than alternative aerial systems, their ability to keep station at a fixed point for a long term, simplified altitude control, and the ease of retrieving their payload attribute to their growing appeal in atmospheric research. NASA, Toyota, and the School of Mechanical and Aerospace Engineering Oklahoma State University are active in developing and deploying high-altitude inflatable kite systems for atmospheric boundary layer (ABL) research—crucial to advancing the accuracy of weather forecasting. Improvements in kite design, as well as instrumentation and supporting infrastructure, are key to further accelerating the use of kites in atmospheric research. The work underway by these researchers is intended to be a deliberate step in the evolutionary development of these beneficial systems.
Abstract
Kites have been used as weather sensing solutions for over 250 years. The fact that they are simpler to operate and train on than alternative aerial systems, their ability to keep station at a fixed point for a long term, simplified altitude control, and the ease of retrieving their payload attribute to their growing appeal in atmospheric research. NASA, Toyota, and the School of Mechanical and Aerospace Engineering Oklahoma State University are active in developing and deploying high-altitude inflatable kite systems for atmospheric boundary layer (ABL) research—crucial to advancing the accuracy of weather forecasting. Improvements in kite design, as well as instrumentation and supporting infrastructure, are key to further accelerating the use of kites in atmospheric research. The work underway by these researchers is intended to be a deliberate step in the evolutionary development of these beneficial systems.
Abstract
In the U.S. state of Iowa, the increase in wind power production has motivated interest into the impacts of low-level jets on turbine performance. In this study, two commercial lidar systems were used to sample wind profiles in August 2013. Jets were systematically detected and assigned an intensity rating from 0 (weak) to 3 (strong). Many similarities were found between observed jets and the well-studied Great Plains low-level jet in summer, including average jet heights between 300 and 500 m above ground level, a preference for southerly wind directions, and a nighttime bias for stronger jets. Strong vertical wind shear and veer were observed, as well as veering over time associated with the LLJs. Speed, shear, and veer increases extended into the turbine-rotor layer during intense jets. Ramp events, in which winds rapidly increase or decrease in the rotor layer, were also commonly observed during jet formation periods. The lidar data were also used to evaluate various configurations of the Weather Research and Forecasting Model. Jet occurrence exhibited a stronger dependence on the choice of initial and boundary condition data, while reproduction of the strongest jets was influenced more strongly by the choice of planetary boundary layer scheme. A decomposition of mean model winds suggested that the main forcing mechanism for observed jets was the inertial oscillation. These results have implications for wind energy forecasting and site assessment in the Midwest.
Abstract
In the U.S. state of Iowa, the increase in wind power production has motivated interest into the impacts of low-level jets on turbine performance. In this study, two commercial lidar systems were used to sample wind profiles in August 2013. Jets were systematically detected and assigned an intensity rating from 0 (weak) to 3 (strong). Many similarities were found between observed jets and the well-studied Great Plains low-level jet in summer, including average jet heights between 300 and 500 m above ground level, a preference for southerly wind directions, and a nighttime bias for stronger jets. Strong vertical wind shear and veer were observed, as well as veering over time associated with the LLJs. Speed, shear, and veer increases extended into the turbine-rotor layer during intense jets. Ramp events, in which winds rapidly increase or decrease in the rotor layer, were also commonly observed during jet formation periods. The lidar data were also used to evaluate various configurations of the Weather Research and Forecasting Model. Jet occurrence exhibited a stronger dependence on the choice of initial and boundary condition data, while reproduction of the strongest jets was influenced more strongly by the choice of planetary boundary layer scheme. A decomposition of mean model winds suggested that the main forcing mechanism for observed jets was the inertial oscillation. These results have implications for wind energy forecasting and site assessment in the Midwest.