Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Nusrat Yussouf x
- Journal of Hydrometeorology x
- Refine by Access: All Content x
Abstract
The goal of the National Oceanic and Atmospheric Administration’s (NOAA) Warn-on-Forecast (WoF) program is to provide frequently updating, probabilistic model guidance that will enable National Weather Service (NWS) forecasters to produce more continuous communication of hazardous weather threats (e.g., heavy rainfall, flash floods, damaging wind, large hail, and tornadoes) between the watch and warning temporal and spatial scales. To evaluate the application of this WoF concept for probabilistic short-term flash flood prediction, the 0–3-h rainfall forecasts from NOAA National Severe Storms Laboratory’s (NSSL) experimental WoF System (WoFS) were integrated as the forcing to the NWS operational hydrologic modeling core within the Flooded Locations and Simulated Hydrographs (FLASH) system. Initial assessment of the potential impacts of probabilistic short-term flash flood forecasts from this coupled atmosphere–hydrology (WoFS-FLASH) modeling system were evaluated in the 2018 Hydrometeorology Testbed Multi-Radar Multi-Sensor Hydrology experiment held in Norman, Oklahoma. During the 3-week experiment period, a total of nine NWS forecasters analyzed three retrospective flash flood events in archive mode. This study will describe specifically what information participants extracted from the WoFS-FLASH products during these three archived events, and how this type of information is expected to impact operational decision-making processes. Overall feedback from the testbed participants’ evaluations show promise for the coupled NSSL WoFS-FLASH system probabilistic flash flood model guidance to enable earlier assessment and detection of flash flood threats and to advance the current warning lead time for these events.
Abstract
The goal of the National Oceanic and Atmospheric Administration’s (NOAA) Warn-on-Forecast (WoF) program is to provide frequently updating, probabilistic model guidance that will enable National Weather Service (NWS) forecasters to produce more continuous communication of hazardous weather threats (e.g., heavy rainfall, flash floods, damaging wind, large hail, and tornadoes) between the watch and warning temporal and spatial scales. To evaluate the application of this WoF concept for probabilistic short-term flash flood prediction, the 0–3-h rainfall forecasts from NOAA National Severe Storms Laboratory’s (NSSL) experimental WoF System (WoFS) were integrated as the forcing to the NWS operational hydrologic modeling core within the Flooded Locations and Simulated Hydrographs (FLASH) system. Initial assessment of the potential impacts of probabilistic short-term flash flood forecasts from this coupled atmosphere–hydrology (WoFS-FLASH) modeling system were evaluated in the 2018 Hydrometeorology Testbed Multi-Radar Multi-Sensor Hydrology experiment held in Norman, Oklahoma. During the 3-week experiment period, a total of nine NWS forecasters analyzed three retrospective flash flood events in archive mode. This study will describe specifically what information participants extracted from the WoFS-FLASH products during these three archived events, and how this type of information is expected to impact operational decision-making processes. Overall feedback from the testbed participants’ evaluations show promise for the coupled NSSL WoFS-FLASH system probabilistic flash flood model guidance to enable earlier assessment and detection of flash flood threats and to advance the current warning lead time for these events.