Search Results

You are looking at 1 - 10 of 30 items for

  • Author or Editor: Petros Ioannou x
  • Refine by Access: All Content x
Clear All Modify Search
Petros J. Ioannou

Abstract

Recently, a new theoretical and conceptual model of quasigeostrophic turbulence has been advanced in which eddy variance is regarded as being maintained by transient growth of perturbations arising from sources including the nonlinear interactions among the eddies, but crucially without a direct contribution of unstable modal growth to the maintenance of variance. This theory is based on the finding that stochastic forcing of the subcritical atmospheric flow supports variance arising from induced transfer of energy from the background flow to the disturbance field that substantially exceeds the variance expected from the decay rate of the associated normal modes in an equivalent normal system. Herein the authors prove that such amplification of variance is a general property of the stochastic dynamics of systems governed by nonnormal evolution operators and that consequently the response of the atmosphere to unbiased forcing is always underestimated when consideration is limited to the response of the system's individual normal modes to stochastic excitation.

Full access
Petros Ioannou and Richard S. Lindzen

Abstract

A formalism is developed for the calculation of baroclinic instability for barotropically stable jets. The formalism is applied to jet versions of both the Eady and Charney problems. It is found that jets act to confine instabilities meridionally, thus internally determining meridional wave scales. Once this internally determined meridional scale is taken into account, results correspond plausibly to classical results without a jet.

Consideration of the effect of such instabilities on the mean flow shows that they act to concentrate the jet barotropically while simultaneously reducing baroclinicity.

Full access
Petros Ioannou and Richard S. Lindzen

Abstract

The baroclinic instability of a frontal mean state is investigated using the WKBJ approximation. The results are compared with numerical calculations performed on the same mean state. Excellent agreement (within 5%) is found for jets whose half-width is as small as a Rossby radius of deformation. For jets 20% broader, the agreement is almost perfect.

Full access
Eli Tziperman and Petros J. Ioannou

Abstract

The physical mechanisms of transient amplification of initial perturbations to the thermohaline circulation (THC), and of the optimal stochastic forcing of THC variability, are discussed using a simple meridional box model. Two distinct mechanisms of transient amplification are found. One such mechanism, with a transient amplification timescale of a couple of years, involves an interaction between the THC induced by rapidly decaying sea surface temperature anomalies and the THC induced by the slower-decaying salinity mode. The second mechanism of transient amplification involves an interaction between different slowly decaying salinity modes and has a typical growth timescale of decades. The optimal stochastic atmospheric forcing of heat and freshwater fluxes are calculated as well. It is shown that the optimal forcing induces low-frequency THC variability by exciting the salinity-dominated variability modes of the THC.

Full access
Brian F. Farrell and Petros J. Ioannou

Abstract

Turbulent flows are often observed to be organized into large-spatial-scale jets such as the familiar zonal jets in the upper levels of the Jovian atmosphere. These relatively steady large-scale jets are not forced coherently but are maintained by the much smaller spatial- and temporal-scale turbulence with which they coexist. The turbulence maintaining the jets may arise from exogenous sources such as small-scale convection or from endogenous sources such as eddy generation associated with baroclinic development processes within the jet itself. Recently a comprehensive theory for the interaction of jets with turbulence has been developed called stochastic structural stability theory (SSST). In this work SSST is used to study the formation of multiple jets in barotropic turbulence in order to understand the physical mechanism producing and maintaining these jets and, specifically, to predict the jet amplitude, structure, and spacing. These jets are shown to be maintained by the continuous spectrum of shear waves and to be organized into stable attracting states in the mutually adjusted mean flow and turbulence fields. The jet structure, amplitude, and spacing and the turbulence level required for emergence of jets can be inferred from these equilibria. For weak but supercritical turbulence levels the jet scale is determined by the most unstable mode of the SSST system and the amplitude of the jets at equilibrium is determined by the balance between eddy forcing and mean flow dissipation. At stronger turbulence levels the jet amplitude saturates with jet spacing and amplitude satisfying the Rayleigh–Kuo stability condition that implies the Rhines scale. Equilibrium jets obtained with the SSST system are in remarkable agreement with equilibrium jets obtained in simulations of fully developed β-plane turbulence.

Full access
Nikolaos A. Bakas and Petros J. Ioannou

Abstract

In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in the region exterior to the shear layer. The shear flow not only passively filters and refracts the emitted wave spectrum, but also actively participates in the gravity wave emission in conjunction with the distributed forcing. This interaction leads to enhanced radiated momentum fluxes but more importantly to enhanced gravity wave energy fluxes. This enhanced emission power can be traced to the nonnormal growth of the perturbations in the shear region, that is, to the transfer of the kinetic energy of the mean shear flow to the emitted gravity waves. The emitted wave energy flux increases with shear and can become as large as 30 times greater than the corresponding flux emitted in the absence of a localized shear region.

Waves that have horizontal wavelengths larger than the depth of the shear layer radiate easterly momentum away, whereas the shorter waves are trapped in the shear region and deposit their momentum at their critical levels. The observed spectrum, as well as the physical mechanisms influencing the spectrum such as wave interference and Doppler shifting effects, is discussed. While for large Richardson numbers there is equipartition of momentum among a wide range of frequencies, most of the energy is found to be carried by waves having vertical wavelengths in a narrow band around the value of twice the depth of the region. It is shown that the waves that are emitted from the shear region have vertical wavelengths of the size of the shear region.

Full access
Brian F. Farrell and Petros J. Ioannou

Abstract

Temporally distributed deterministic and stochastic excitation of the tangent linear forecast system governing forecast error growth and the tangent linear observer system governing assimilation error growth is examined. The method used is to determine the optimal set of distributed deterministic and stochastic forcings of the forecast and observer systems over a chosen time interval. Distributed forcing of an unstable system addresses the effect of model error on forecast error in the presumably unstable forecast error system. Distributed forcing of a stable system addresses the effect on the assimilation of model error in the presumably stable data assimilation system viewed as a stable observer. In this study, model error refers both to extrinsic physical error forcing, such as that which arises from unresolved cumulus activity, and to intrinsic error sources arising from imperfections in the numerical model and in the physical parameterizations.

Full access
Brian F. Farrell and Petros J. Ioannou

Abstract

Understanding the physical mechanism maintaining fluid turbulence remains a fundamental theoretical problem. The two-layer model is an analytically and computationally simple system in which the dynamics of turbulence can be conveniently studied; in this work, a maximally simplified model of the statistically steady turbulent state in this system is constructed to isolate and identify the essential mechanism of turbulence. In this minimally complex turbulence model the effects of nonlinearity are parameterized using an energetically consistent stochastic process that is white in both space and time, turbulent fluxes are obtained using a stochastic turbulence model (STM), and statistically steady turbulent states are identified using stochastic structural stability theory (SSST). These turbulent states are the fixed-point equilibria of the nonlinear SSST system. For parameter values typical of the midlatitude atmosphere, these equilibria predict the emergence of marginally stable eddy-driven baroclinic jets. The eddy variances and fluxes associated with these jets and the power-law scaling of eddy variances and fluxes are consistent with observations and simulations of baroclinic turbulence. This optimally simple model isolates the essential physics of baroclinic turbulence: maintenance of variance by transient perturbation growth, replenishment of the transiently growing subspace by nonlinear energetically conservative eddy–eddy scattering, and equilibration to a statistically steady state of marginal stability by a combination of nonlinear eddy-induced mean jet modification and eddy dissipation. These statistical equilibrium states provide a theory for the general circulation of baroclinically turbulent planetary atmospheres.

Full access
Brian F. Farrell and Petros J. Ioannou

Abstract

Methods for approximating a stable linear autonomous dynamical system by a system of lower order are examined. Reducing the order of a dynamical system is useful theoretically in identifying the irreducible dimension of the dynamics and in isolating the dominant spatial structures supporting the dynamics, and practically in providing tractable lower-dimension statistical models for climate studies and error covariance models for forecast analysis and initialization. Optimal solution of the model order reduction problem requires simultaneous representation of both the growing structures in the system and the structures into which these evolve. For autonomous operators associated with fluid flows a nearly optimal solution of the model order reduction problem with prescribed error bounds is obtained by truncating the dynamics in its Hankel operator representation. Simple model examples including a reduced-order model of Couette flow are used to illustrate the theory. Practical methods for obtaining approximations to the optimal order reduction problem based on finite-time singular vector analysis of the propagator are discussed and the accuracy of the resulting reduced models evaluated.

Full access
Brian F. Farrell and Petros J. Ioannou

Abstract

Synoptic-scale eddy variance and fluxes of heat and momentum in midlatitude jets are sensitive to small changes in mean jet velocity, dissipation, and static stability. In this work the change in the jet producing the greatest increase in variance or flux is determined. Remarkably, a single jet structure change completely characterizes the sensitivity of a chosen quadratic statistical quantity to modification of the mean jet in the sense that an arbitrary change in the jet influences a chosen statistical quantity in proportion to the projection of the change on this single optimal structure. The method used extends previous work in which storm track statistics were obtained using a stochastic model of jet turbulence.

Full access