Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Qingfu Liu x
- Weather and Forecasting x
- Refine by Access: All Content x
Abstract
This study presents evaluation of real-time performance of the National Centers for Environmental Prediction (NCEP) operational Hurricane Weather Research and Forecast (HWRF) modeling system upgraded and implemented in 2013 in the western North Pacific basin (WPAC). Retrospective experiments with the 2013 version of the HWRF Model upgrades for 2012 WPAC tropical cyclones (TCs) show significant forecast improvement compared to the real-time forecasts from the 2012 version of HWRF. Despite a larger number of strong storms in the WPAC during 2013, real-time forecasts from the 2013 HWRF (H213) showed an overall reduction in intensity forecast errors, mostly at the 4–5-day lead times. Verification of the H213’s skill against the climate persistence forecasts shows that although part of such improvements in 2013 is related to the different seasonal characteristics between the years 2012 and 2013, the new model upgrades implemented in 2013 could provide some further improvement that the 2012 version of HWRF could not achieve. Further examination of rapid intensification (RI) events demonstrates noticeable skill of H213 with the probability of detection (POD) index of 0.22 in 2013 compared to 0.09 in 2012, suggesting that H213 starts to show skill in predicting RI events in the WPAC.
Abstract
This study presents evaluation of real-time performance of the National Centers for Environmental Prediction (NCEP) operational Hurricane Weather Research and Forecast (HWRF) modeling system upgraded and implemented in 2013 in the western North Pacific basin (WPAC). Retrospective experiments with the 2013 version of the HWRF Model upgrades for 2012 WPAC tropical cyclones (TCs) show significant forecast improvement compared to the real-time forecasts from the 2012 version of HWRF. Despite a larger number of strong storms in the WPAC during 2013, real-time forecasts from the 2013 HWRF (H213) showed an overall reduction in intensity forecast errors, mostly at the 4–5-day lead times. Verification of the H213’s skill against the climate persistence forecasts shows that although part of such improvements in 2013 is related to the different seasonal characteristics between the years 2012 and 2013, the new model upgrades implemented in 2013 could provide some further improvement that the 2012 version of HWRF could not achieve. Further examination of rapid intensification (RI) events demonstrates noticeable skill of H213 with the probability of detection (POD) index of 0.22 in 2013 compared to 0.09 in 2012, suggesting that H213 starts to show skill in predicting RI events in the WPAC.
Abstract
In this study, the design of movable multilevel nesting (MMLN) in the Hurricane Weather Research and Forecasting (HWRF) modeling system is documented. The configuration of a new experimental HWRF system with a much larger horizontal outer domain and multiple sets of MMLN, referred to as the “basin scale” HWRF, is also described. The performance of this new system is applied for various difficult forecast scenarios such as 1) simulating multiple storms [i.e., Hurricanes Earl (2010), Danielle (2010), and Frank (2010)] and 2) forecasting tropical cyclone (TC) to extratropical cyclone transitions, specifically Hurricane Sandy (2012). Verification of track forecasts for the 2011–14 Atlantic and eastern Pacific hurricane seasons demonstrates that the basin-scale HWRF produces similar overall results to the 2014 operational HWRF, the best operational HWRF at the same resolution. In the Atlantic, intensity forecasts for the basin-scale HWRF were notably worse than for the 2014 operational HWRF, but this deficiency was shown to be from poor intensity forecasts for Hurricane Leslie (2012) associated with the lack of ocean coupling in the basin-scale HWRF. With Leslie removed, the intensity forecast errors were equivalent. The basin-scale HWRF is capable of predicting multiple TCs simultaneously, allowing more realistic storm-to-storm interactions. Even though the basin-scale HWRF produced results only comparable to the regular operational HWRF at this stage, this configuration paves a promising pathway toward operations.
Abstract
In this study, the design of movable multilevel nesting (MMLN) in the Hurricane Weather Research and Forecasting (HWRF) modeling system is documented. The configuration of a new experimental HWRF system with a much larger horizontal outer domain and multiple sets of MMLN, referred to as the “basin scale” HWRF, is also described. The performance of this new system is applied for various difficult forecast scenarios such as 1) simulating multiple storms [i.e., Hurricanes Earl (2010), Danielle (2010), and Frank (2010)] and 2) forecasting tropical cyclone (TC) to extratropical cyclone transitions, specifically Hurricane Sandy (2012). Verification of track forecasts for the 2011–14 Atlantic and eastern Pacific hurricane seasons demonstrates that the basin-scale HWRF produces similar overall results to the 2014 operational HWRF, the best operational HWRF at the same resolution. In the Atlantic, intensity forecasts for the basin-scale HWRF were notably worse than for the 2014 operational HWRF, but this deficiency was shown to be from poor intensity forecasts for Hurricane Leslie (2012) associated with the lack of ocean coupling in the basin-scale HWRF. With Leslie removed, the intensity forecast errors were equivalent. The basin-scale HWRF is capable of predicting multiple TCs simultaneously, allowing more realistic storm-to-storm interactions. Even though the basin-scale HWRF produced results only comparable to the regular operational HWRF at this stage, this configuration paves a promising pathway toward operations.
Abstract
This study documents the recent efforts of the hurricane modeling team at the National Centers for Environmental Prediction’s (NCEP) Environmental Modeling Center (EMC) in implementing the operational Hurricane Weather Research and Forecasting Model (HWRF) for real-time tropical cyclone (TC) forecast guidance in the western North Pacific basin (WPAC) from May to December 2012 in support of the operational forecasters at the Joint Typhoon Warning Center (JTWC). Evaluation of model performance for the WPAC in 2012 reveals that the model has promising skill with the 3-, 4-, and 5-day track errors being 125, 220, and 290 nautical miles (n mi; 1 n mi = 1.852 km), respectively. Intensity forecasts also show good performance, with the most significant intensity error reduction achieved during the first 24 h. Stratification of the track and intensity forecast errors based on storm initial intensity reveals that HWRF tends to underestimate storm intensity for weak storms and overestimate storm intensity for strong storms. Further analysis of the horizontal distribution of track and intensity forecast errors over the WPAC suggests that HWRF possesses a systematic negative intensity bias, slower movement, and a rightward bias in the lower latitudes. At higher latitudes near the East China Sea, HWRF shows a positive intensity bias and faster storm movement. This appears to be related to underestimation of the dominant large-scale system associated with the western Pacific subtropical high, which renders weaker steering flows in this basin.
Abstract
This study documents the recent efforts of the hurricane modeling team at the National Centers for Environmental Prediction’s (NCEP) Environmental Modeling Center (EMC) in implementing the operational Hurricane Weather Research and Forecasting Model (HWRF) for real-time tropical cyclone (TC) forecast guidance in the western North Pacific basin (WPAC) from May to December 2012 in support of the operational forecasters at the Joint Typhoon Warning Center (JTWC). Evaluation of model performance for the WPAC in 2012 reveals that the model has promising skill with the 3-, 4-, and 5-day track errors being 125, 220, and 290 nautical miles (n mi; 1 n mi = 1.852 km), respectively. Intensity forecasts also show good performance, with the most significant intensity error reduction achieved during the first 24 h. Stratification of the track and intensity forecast errors based on storm initial intensity reveals that HWRF tends to underestimate storm intensity for weak storms and overestimate storm intensity for strong storms. Further analysis of the horizontal distribution of track and intensity forecast errors over the WPAC suggests that HWRF possesses a systematic negative intensity bias, slower movement, and a rightward bias in the lower latitudes. At higher latitudes near the East China Sea, HWRF shows a positive intensity bias and faster storm movement. This appears to be related to underestimation of the dominant large-scale system associated with the western Pacific subtropical high, which renders weaker steering flows in this basin.