Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Rafael L. Bras x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Qihang Li
,
Rafael L. Bras
, and
Daniele Veneziano

Abstract

Rainfall data collected by radar in the vicinity of Darwin, Australia, have been analysed in terms of their mean, variance, autocorrelation of area-averaged rain rate, and diurnal variation. It is found that, when compared with the well-studied GATE (Global Atmospheric Research Program Atlantic Tropical Experiment) data, Darwin rainfall has larger coefficient of variation (CV), faster reduction of CV with increasing area size, weaker temporal correlation, and a strong diurnal cycle and intermittence. The coefficient of variation for Darwin rainfall has larger magnitude and exhibits larger spatial variability over the sea portion than over the land portion within the area of radar coverage. Stationary and nonstationary models have been used to study the sampling errors associated with space-based rainfall measurement. The nonstationary model shows that the sampling error is sensitive to the starting sampling time for some sampling frequencies, due to the diurnal cycle of rain, but not for others. Sampling experiments using data also show such sensitivity. When the errors are averaged over starting time, the results of the experiments and the stationary and nonstationary models match each other very closely. In the small areas for which data are available for both Darwin and GATE, the sampling error is expected to be larger for Darwin due to its larger CV.

Full access
Qihang Li
,
Rafael L. Bras
, and
Shafiqul Islam

Abstract

The behavior of a numerical cloud model is investigated in terms of its sensitivity to perturbations with two kinds of lateral boundary conditions: 1) with cyclic lateral boundary conditions, the model is sensitive to many aspects of its structure, including a very small potential temperature perturbation at only one grid point, changes in time step, and small changes in parameters such as the autoconversion rate from cloud water to rainwater and the latent heat of vaporization; 2) with prescribed lateral boundary conditions, growth and decay of perturbations are highly dependent on the flow conditions inside the domain. It is shown that under relatively uniform (unidirectional) advection across the domain, the perturbations will decay. On the other hand, convergence, divergence, or, in general, flow patterns with changing directions support error growth. This study shows that it is the flow structure inside the model domain that is important in determining whether the prescribed lateral boundary conditions will result in decaying or growing perturbations. The numerical model is inherently sensitive to initial perturbations, but errors can decay due to advection of information from lateral boundaries across the domain by uniform flow. This result provides one explanation to the reported results in earlier studies showing both error growth and decay.

Full access
Shafiqul Islam
,
Rafael L. Bras
, and
Ignacio Rodriguez-Iturbe

Abstract

There have been numerous attempts to detect the presence of deterministic chaos by estimating the correlation dimension. The values of reported correlation dimension for various geophysical time series vary between 1.3 and virtually infinity (i.e., no saturation). It is pointed out that analyzing variables that depend on physical constraints and thresholds, like precipitation, may lead to underestimation of the correlation dimension of the underlying dynamical system.

Full access
Marcos L. Pessoa
,
Rafael L. Bras
, and
Earle R. Williams

Abstract

Weather radar, in combination with a distributed rainfall-runoff model, promises to significantly improve real-time flood forecasting. This paper investigates the value of radar-derived precipitation in forecasting streamflow in the Sieve River basin, near Florence, Italy. The basin is modeled with a distributed rainfall-runoff model that exploits topographic information available from digital elevation maps. The sensitivity of the flood forecast to various properties of the radar-derived rainfall is studied. It is found that use of the proper radar reflectivity-rainfall intensity (Z-R) relationship is the most crucial factor in obtaining correct food hydrographs. Errors resulting from spatially averaging radar rainfall are acceptable, but the use of discrete point information (i.e., raingage) can lead to serious problems. Reducing the resolution of the 5-min radar signal by temporally averaging over 15 and 30 min does not lead to major errors. Using 3-bit radar data (rather than the usual 8-bit data) to represent intensifies results in significant operational savings without serious problems in hydrograph accuracy.

Full access
Shafiqul Islam
,
Rafael L. Bras
, and
Kerry A. Emanuel

Abstract

A general framework has been developed to study the predictability of space–time averages of mesoscale rainfall in the tropics. A comparative ratio between the natural variability of the rainfall process and the prediction error is used to define the predictability range. The predictability of the spatial distribution of precipitation is quantified by the cross correlation between the control and the perturbed rainfall fields. An upper limit of prediction error, called normalized variability, has been derived as a function of space–time averaging. Irrespective of the type and amplitude of perturbations, a space–time averaging set of 25 km2–15 min (or larger time averaging) is found to be necessary to limit the error growth up to or below the prescribed large-scale mean rainfall.

Full access