Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Rick T. Lader x
  • Refine by Access: All Content x
Clear All Modify Search
Rick Lader
,
Uma S. Bhatt
,
John E. Walsh
,
T. Scott Rupp
, and
Peter A. Bieniek

Abstract

Alaska is experiencing effects of global climate change that are due, in large part, to the positive feedback mechanisms associated with polar amplification. The major risk factors include loss of sea ice and glaciers, thawing permafrost, increased wildfires, and ocean acidification. Reanalyses, integral to understanding mechanisms of Alaska’s past climate and to helping to calibrate modeling efforts, are based on the output of weather forecast models that assimilate observations. This study evaluates temperature and precipitation from five reanalyses at monthly and daily time scales for the period 1979–2009. Monthly data are evaluated spatially at grid points and for six climate zones in Alaska. In addition, daily maximum temperature, minimum temperature, and precipitation from reanalyses are compared with meteorological-station data at six locations. The reanalyses evaluated in this study include the NCEP–NCAR reanalysis (R1), North American Regional Reanalysis (NARR), Climate Forecast System Reanalysis (CFSR), ERA-Interim, and the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Maps of seasonal bias and standard deviation, constructed from monthly data, show how the reanalyses agree with observations spatially. Cross correlations between the monthly gridded and daily station time series are computed to provide a measure of confidence that data users can assume when selecting reanalysis data in a region without many surface observations. A review of natural hazards in Alaska indicates that MERRA is the top reanalysis for wildfire and interior-flooding applications. CFSR is the recommended reanalysis for North Slope coastal erosion issues and, along with ERA-Interim, for heavy precipitation in southeastern Alaska.

Full access
Peter A. Bieniek
,
Uma S. Bhatt
,
John E. Walsh
,
T. Scott Rupp
,
Jing Zhang
,
Jeremy R. Krieger
, and
Rick Lader

Abstract

The European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) has been downscaled using a regional model covering Alaska at 20-km spatial and hourly temporal resolution for 1979–2013. Stakeholders can utilize these enhanced-resolution data to investigate climate- and weather-related phenomena in Alaska. Temperature and precipitation are analyzed and compared among ERA-Interim, WRF Model downscaling, and in situ observations. Relative to ERA-Interim, the downscaling is shown to improve the spatial representation of temperature and precipitation around Alaska’s complex terrain. Improvements include increased winter and decreased summer higher-elevation downscaled seasonal average temperatures. Precipitation is also enhanced over higher elevations in all seasons relative to the reanalysis. These spatial distributions of temperature and precipitation are consistent with the few available gridded observational datasets that account for topography. The downscaled precipitation generally exceeds observationally derived estimates in all seasons over mainland Alaska, and it is less than observations in the southeast. Temperature biases tended to be more mixed, and the downscaling reduces absolute bias at higher elevations, especially in winter. Careful selection of data for local site analysis from the downscaling can help to reduce these biases, especially those due to inconsistencies in elevation. Improved meteorological station coverage at higher elevations will be necessary to better evaluate gridded downscaled products in Alaska because biases vary and may even change sign with elevation.

Full access
Thomas J. Ballinger
,
Uma S. Bhatt
,
Peter A. Bieniek
,
Brian Brettschneider
,
Rick T. Lader
,
Jeremy S. Littell
,
Richard L. Thoman
,
Christine F. Waigl
,
John E. Walsh
, and
Melinda A. Webster

Abstract

Some of the largest climatic changes in the Arctic have been observed in Alaska and the surrounding marginal seas. Near-surface air temperature (T2m), precipitation (P), snowfall, and sea ice changes have been previously documented, often in disparate studies. Here, we provide an updated, long-term trend analysis (1957–2021; n = 65 years) of such parameters in ERA5, NOAA U.S. Climate Gridded Dataset (NClimGrid), NOAA National Centers for Environmental Information (NCEI) Alaska climate division, and composite sea ice products preceding the upcoming Fifth National Climate Assessment (NCA5) and other near-future climate reports. In the past half century, annual T2m has broadly increased across Alaska, and during winter, spring, and autumn on the North Slope and North Panhandle (T2m > 0.50°C decade−1). Precipitation has also increased across climate divisions and appears strongly interrelated with temperature–sea ice feedbacks on the North Slope, specifically with increased (decreased) open water (sea ice extent). Snowfall equivalent (SFE) has decreased in autumn and spring, perhaps aligned with a regime transition of snow to rain, while winter SFE has broadly increased across the state. Sea ice decline and melt-season lengthening also have a pronounced signal around Alaska, with the largest trends in these parameters found in the Beaufort Sea. Alaska’s climatic changes are also placed in context against regional and contiguous U.S. air temperature trends and show ∼50% greater warming in Alaska relative to the lower-48 states. Alaska T2m increases also exceed those of any contiguous U.S. subregion, positioning Alaska at the forefront of U.S. climate warming.

Significance Statement

This study produces an updated, long-term trend analysis (1957–2021) of key Alaska climate parameters, including air temperature, precipitation (including snowfall equivalent), and sea ice, to inform upcoming climate assessment reports, including the Fifth National Climate Assessment (NCA5) scheduled for publication in 2023. Key findings include widespread annual and seasonal warming with increased precipitation across much of the state. Winter snowfall has broadly increased, but spring and autumn snowfalls have decreased as rainfall increased. Autumn warming and precipitation increases over the North Slope, in particular, appear related to decreased sea ice coverage in the Beaufort Sea and Chukchi Seas. These trends may result from interrelated processes that accelerate Alaska climate changes relative to those of the contiguous United States.

Open access
James L. Partain Jr.
,
Sharon Alden
,
Heidi Strader
,
Uma S. Bhatt
,
Peter A. Bieniek
,
Brian R. Brettschneider
,
John E. Walsh
,
Rick T. Lader
,
Peter Q. Olsson
,
T. Scott Rupp
,
Richard L. Thoman Jr.
,
Alison D. York
, and
Robert H. Ziel
Full access