Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Ruiyang Ma x
  • All content x
Clear All Modify Search
Ruiyang Ma, Dong Zheng, Yijun Zhang, Wen Yao, Wenjuan Zhang, and Deqing Cuomu


Herein, we compared data on the spatiotemporal distribution of lightning activity obtained from the World Wide Lightning Location Network (WWLLN) with that from the Lightning Imaging Sensor (LIS). The WWLLN and LIS both suggest intense lightning activity over the central and southeastern Tibetan Plateau (TP) during May–September. Meanwhile, the WWLLN indicates relatively weak lightning activity over the northeastern TP, where the LIS suggests very intense lightning activity, and it also indicates a high-density lightning center over the southwestern TP that is not suggested by the LIS. Furthermore, the WWLLN lightning peaks in August in terms of monthly variation and in late August in terms of 10-day variation, unlike the corresponding LIS lightning peaks of July and late June, respectively. Other observation data were also introduced into the comparison. The blackbody temperature (TBB) data from the Fengyun-2E geostationary satellite (as a proxy of deep convection) and thunderstorm-day data support the spatial distribution of the WWLLN lightning more. Meanwhile, for seasonal variation, the TBB data are more analogous to the LIS data, whereas the cloud-to-ground (CG) lightning data from a local CG lightning location system are closer to the WWLLN data. It is speculated that the different WWLLN and LIS observation modes may cause their data to represent different dominant types of lightning, thereby leading to differences in the spatiotemporal distributions of their data. The results may further imply that there exist regional differences and seasonal variations in the electrical properties of thunderstorms over the TP.

Restricted access