Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Russell S. Vose x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Matthew J. Menne
,
Claude N. Williams Jr.
, and
Russell S. Vose

In support of climate monitoring and assessments, the National Oceanic and Atmospheric Administration's (NOAA's) National Climatic Data Center has developed an improved version of the U.S. Historical Climatology Network temperature dataset (HCN version 2). In this paper, the HCN version 2 temperature data are described in detail, with a focus on the quality-assured data sources and the systematic bias adjustments. The bias adjustments are discussed in the context of their effect on U.S. temperature trends from the period 1895–2007 and in terms of the differences between version 2 and its widely used predecessor (now referred to as HCN version 1). Evidence suggests that the collective effect of changes in observation practice at U.S. HCN stations is systematic and of the same order of magnitude as the background climate signal. For this reason, bias adjustments are essential to reducing the uncertainty in U.S. climate trends. The largest biases in the HCN are shown to be associated with changes to the time of observation and with the widespread changeover from liquid-in-glass thermometers to the maximum–minimum temperature system (MMTS). With respect to HCN version 1, HCN version 2 trends in maximum temperatures are similar, while minimum temperature trends are somewhat smaller because of 1) an apparent overcorrection in HCN version 1 for the MMTS instrument change and 2) the systematic effect of undocumented station changes, which were not addressed in HCN version 1.

Full access
Anthony Arguez
,
Imke Durre
,
Scott Applequist
,
Russell S. Vose
,
Michael F. Squires
,
Xungang Yin
,
Richard R. Heim Jr.
, and
Timothy W. Owen

The National Oceanic and Atmospheric Administration (NOAA) released the 1981–2010 U.S. Climate Normals in July 2011, representing the latest decadal installment of this long-standing product line. Climatic averages (and other statistics) of temperature, precipitation, snowfall, and numerous derived quantities were calculated for ~9,800 stations operated by the U.S. National Weather Service (NWS). They include estimated normals, or “quasi normals,” for approximately 2,000 active short-record stations such as those in the U.S. Climate Reference Network. The 1981–2010 installment features several new products and methodological enhancements: 1) state-of-the-art temperature homogenization at the monthly scale, 2) extensive utilization of quality-controlled daily climate data, 3) new statistical approaches for calculating daily temperature normals and heating and cooling degree days, and 4) a comprehensive suite of precipitation, snowfall, and snow depth statistics. This paper provides a general overview of this new suite of climate normals products.

Full access
Russell S. Vose
,
Derek Arndt
,
Viva F. Banzon
,
David R. Easterling
,
Byron Gleason
,
Boyin Huang
,
Ed Kearns
,
Jay H. Lawrimore
,
Matthew J. Menne
,
Thomas C. Peterson
,
Richard W. Reynolds
,
Thomas M. Smith
,
Claude N. Williams Jr.
, and
David B. Wuertz

This paper describes the new release of the Merged Land–Ocean Surface Temperature analysis (MLOST version 3.5), which is used in operational monitoring and climate assessment activities by the NOAA National Climatic Data Center. The primary motivation for the latest version is the inclusion of a new land dataset that has several major improvements, including a more elaborate approach for addressing changes in station location, instrumentation, and siting conditions. The new version is broadly consistent with previous global analyses, exhibiting a trend of 0.076°C decade−1 since 1901, 0.162°C decade−1 since 1979, and widespread warming in both time periods. In general, the new release exhibits only modest differences with its predecessor, the most obvious being very slightly more warming at the global scale (0.004°C decade−1 since 1901) and slightly different trend patterns over the terrestrial surface.

Full access
Thomas C. Peterson
,
Richard R. Heim Jr.
,
Robert Hirsch
,
Dale P. Kaiser
,
Harold Brooks
,
Noah S. Diffenbaugh
,
Randall M. Dole
,
Jason P. Giovannettone
,
Kristen Guirguis
,
Thomas R. Karl
,
Richard W. Katz
,
Kenneth Kunkel
,
Dennis Lettenmaier
,
Gregory J. McCabe
,
Christopher J. Paciorek
,
Karen R. Ryberg
,
Siegfried Schubert
,
Viviane B. S. Silva
,
Brooke C. Stewart
,
Aldo V. Vecchia
,
Gabriele Villarini
,
Russell S. Vose
,
John Walsh
,
Michael Wehner
,
David Wolock
,
Klaus Wolter
,
Connie A. Woodhouse
, and
Donald Wuebbles

Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale “memory” in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability. Instrumental data indicate that the Dust Bowl of the 1930s and the drought in the 1950s were the most significant twentieth-century droughts in the United States, while tree ring data indicate that the megadroughts over the twelfth century exceeded anything in the twentieth century in both spatial extent and duration. The state of knowledge of the factors that cause heat waves, cold waves, floods, and drought to change is fairly good with heat waves being the best understood.

Full access
Russell S. Vose
,
Scott Applequist
,
Mark A. Bourassa
,
Sara C. Pryor
,
Rebecca J. Barthelmie
,
Brian Blanton
,
Peter D. Bromirski
,
Harold E. Brooks
,
Arthur T. DeGaetano
,
Randall M. Dole
,
David R. Easterling
,
Robert E. Jensen
,
Thomas R. Karl
,
Richard W. Katz
,
Katherine Klink
,
Michael C. Kruk
,
Kenneth E. Kunkel
,
Michael C. MacCracken
,
Thomas C. Peterson
,
Karsten Shein
,
Bridget R. Thomas
,
John E. Walsh
,
Xiaolan L. Wang
,
Michael F. Wehner
,
Donald J. Wuebbles
, and
Robert S. Young

This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.

Full access