Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Sarah J. Doherty x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
John H. Seinfeld
,
Gregory R. Carmichael
,
Richard Arimoto
,
William C. Conant
,
Frederick J. Brechtel
,
Timothy S. Bates
,
Thomas A. Cahill
,
Antony D. Clarke
,
Sarah J. Doherty
,
Piotr J. Flatau
,
Barry J. Huebert
,
Jiyoung Kim
,
Krzysztof M. Markowicz
,
Patricia K. Quinn
,
Lynn M. Russell
,
Philip B. Russell
,
Atsushi Shimizu
,
Yohei Shinozuka
,
Chul H. Song
,
Youhua Tang
,
Itsushi Uno
,
Andrew M. Vogelmann
,
Rodney J. Weber
,
Jung-Hun Woo
, and
Xiao Y. Zhang

Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass- burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change.

Full access
Sarah J. Doherty
,
Stephan Bojinski
,
Ann Henderson-Sellers
,
Kevin Noone
,
David Goodrich
,
Nathaniel L. Bindoff
,
John A. Church
,
Kathy A. Hibbard
,
Thomas R. Karl
,
Lucka Kajfez-Bogataj
,
Amanda H. Lynch
,
David E. Parker
,
I. Colin Prentice
,
Venkatachalam Ramaswamy
,
Roger W. Saunders
,
Mark Stafford Smith
,
Konrad Steffen
,
Thomas F. Stocker
,
Peter W. Thorne
,
Kevin E. Trenberth
,
Michel M. Verstraete
, and
Francis W. Zwiers

The Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) concluded that global warming is “unequivocal” and that most of the observed increase since the mid-twentieth century is very likely due to the increase in anthropogenic greenhouse gas concentrations, with discernible human influences on ocean warming, continental-average temperatures, temperature extremes, wind patterns, and other physical and biological indicators, impacting both socioeconomic and ecological systems. It is now clear that we are committed to some level of global climate change, and it is imperative that this be considered when planning future climate research and observational strategies. The Global Climate Observing System program (GCOS), the World Climate Research Programme (WCRP), and the International Geosphere-Biosphere Programme (IGBP) therefore initiated a process to summarize the lessons learned through AR4 Working Groups I and II and to identify a set of high-priority modeling and observational needs. Two classes of recommendations emerged. First is the need to improve climate models, observational and climate monitoring systems, and our understanding of key processes. Second, the framework for climate research and observations must be extended to document impacts and to guide adaptation and mitigation efforts. Research and observational strategies specifically aimed at improving our ability to predict and understand impacts, adaptive capacity, and societal and ecosystem vulnerabilities will serve both purposes and are the subject of the specific recommendations made in this paper.

Full access
Ian M. Brooks
,
Margaret J. Yelland
,
Robert C. Upstill-Goddard
,
Philip D. Nightingale
,
Steve Archer
,
Eric d'Asaro
,
Rachael Beale
,
Cory Beatty
,
Byron Blomquist
,
A. Anthony Bloom
,
Barbara J. Brooks
,
John Cluderay
,
David Coles
,
John Dacey
,
Michael DeGrandpre
,
Jo Dixon
,
William M. Drennan
,
Joseph Gabriele
,
Laura Goldson
,
Nick Hardman-Mountford
,
Martin K. Hill
,
Matt Horn
,
Ping-Chang Hsueh
,
Barry Huebert
,
Gerrit de Leeuw
,
Timothy G. Leighton
,
Malcolm Liddicoat
,
Justin J. N. Lingard
,
Craig McNeil
,
James B. McQuaid
,
Ben I. Moat
,
Gerald Moore
,
Craig Neill
,
Sarah J. Norris
,
Simon O'Doherty
,
Robin W. Pascal
,
John Prytherch
,
Mike Rebozo
,
Erik Sahlee
,
Matt Salter
,
Ute Schuster
,
Ingunn Skjelvan
,
Hans Slagter
,
Michael H. Smith
,
Paul D. Smith
,
Meric Srokosz
,
John A. Stephens
,
Peter K. Taylor
,
Maciej Telszewski
,
Roisin Walsh
,
Brian Ward
,
David K. Woolf
,
Dickon Young
, and
Henk Zemmelink

As part of the U.K. contribution to the international Surface Ocean-Lower Atmosphere Study, a series of three related projects—DOGEE, SEASAW, and HiWASE—undertook experimental studies of the processes controlling the physical exchange of gases and sea spray aerosol at the sea surface. The studies share a common goal: to reduce the high degree of uncertainty in current parameterization schemes. The wide variety of measurements made during the studies, which incorporated tracer and surfactant release experiments, included direct eddy correlation fluxes, detailed wave spectra, wind history, photographic retrievals of whitecap fraction, aerosolsize spectra and composition, surfactant concentration, and bubble populations in the ocean mixed layer. Measurements were made during three cruises in the northeast Atlantic on the RRS Discovery during 2006 and 2007; a fourth campaign has been making continuous measurements on the Norwegian weather ship Polarfront since September 2006. This paper provides an overview of the three projects and some of the highlights of the measurement campaigns.

Full access
Ian M. Brooks
,
Margaret J. Yelland
,
Robert C. Upstill-Goddard
,
Philip D. Nightingale
,
Steve Archer
,
Eric d'Asaro
,
Rachael Beale
,
Cory Beatty
,
Byron Blomquist
,
A. Anthony Bloom
,
Barbara J. Brooks
,
John Cluderay
,
David Coles
,
John Dacey
,
Michael Degrandpre
,
Jo Dixon
,
William M. Drennan
,
Joseph Gabriele
,
Laura Goldson
,
Nick Hardman-Mountford
,
Martin K. Hill
,
Matt Horn
,
Ping-Chang Hsueh
,
Barry Huebert
,
Gerrit De Leeuw
,
Timothy G. Leighton
,
Malcolm Liddicoat
,
Justin J. N. Lingard
,
Craig Mcneil
,
James B. Mcquaid
,
Ben I. Moat
,
Gerald Moore
,
Craig Neill
,
Sarah J. Norris
,
Simon O'Doherty
,
Robin W. Pascal
,
John Prytherch
,
Mike Rebozo
,
Erik Sahlee
,
Matt Salter
,
Ute Schuster
,
Ingunn Skjelvan
,
Hans Slagter
,
Michael H. Smith
,
Paul D. Smith
,
Meric Srokosz
,
John A. Stephens
,
Peter K. Taylor
,
Maciej Telszewski
,
Roisin Walsh
,
Brian Ward
,
David K. Woolf
,
Dickon Young
, and
Henk Zemmelink

Abstract

No Abstract available.

Full access