Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Simon P. Alexander x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search

Tropical Temperature Variability in the UTLS: New Insights from GPS Radio Occultation Observations

Barbara Scherllin-Pirscher
,
Andrea K. Steiner
,
Richard A. Anthes
,
M. Joan Alexander
,
Simon P. Alexander
,
Riccardo Biondi
,
Thomas Birner
,
Joowan Kim
,
William J. Randel
,
Seok-Woo Son
,
Toshitaka Tsuda
, and
Zhen Zeng

Abstract

Global positioning system (GPS) radio occultation (RO) observations, first made of Earth’s atmosphere in 1995, have contributed in new ways to the understanding of the thermal structure and variability of the tropical upper troposphere–lower stratosphere (UTLS), an important component of the climate system. The UTLS plays an essential role in the global radiative balance, the exchange of water vapor, ozone, and other chemical constituents between the troposphere and stratosphere, and the transfer of energy from the troposphere to the stratosphere. With their high accuracy, precision, vertical resolution, and global coverage, RO observations are uniquely suited for studying the UTLS and a broad range of equatorial waves, including gravity waves, Kelvin waves, Rossby and mixed Rossby–gravity waves, and thermal tides. Because RO measurements are nearly unaffected by clouds, they also resolve the upper-level thermal structure of deep convection and tropical cyclones as well as volcanic clouds. Their low biases and stability from mission to mission make RO observations powerful tools for studying climate variability and trends, including the annual cycle and intraseasonal-to-interannual atmospheric modes of variability such as the quasi-biennial oscillation (QBO), Madden–Julian oscillation (MJO), and El Niño–Southern Oscillation (ENSO). These properties also make them useful for evaluating climate models and detection of small trends in the UTLS temperature, key indicators of climate change. This paper reviews the contributions of RO observations to the understanding of the three-dimensional structure of tropical UTLS phenomena and their variability over time scales ranging from hours to decades and longer.

Open access
Jonathan D. Wille
,
Simon P. Alexander
,
Charles Amory
,
Rebecca Baiman
,
Léonard Barthélemy
,
Dana M. Bergstrom
,
Alexis Berne
,
Hanin Binder
,
Juliette Blanchet
,
Deniz Bozkurt
,
Thomas J. Bracegirdle
,
Mathieu Casado
,
Taejin Choi
,
Kyle R. Clem
,
Francis Codron
,
Rajashree Datta
,
Stefano Di Battista
,
Vincent Favier
,
Diana Francis
,
Alexander D. Fraser
,
Elise Fourré
,
René D. Garreaud
,
Christophe Genthon
,
Irina V. Gorodetskaya
,
Sergi González-Herrero
,
Victoria J. Heinrich
,
Guillaume Hubert
,
Hanna Joos
,
Seong-Joong Kim
,
John C. King
,
Christoph Kittel
,
Amaelle Landais
,
Matthew Lazzara
,
Gregory H. Leonard
,
Jan L. Lieser
,
Michelle Maclennan
,
David Mikolajczyk
,
Peter Neff
,
Inès Ollivier
,
Ghislain Picard
,
Benjamin Pohl
,
F. Martin Ralph
,
Penny Rowe
,
Elisabeth Schlosser
,
Christine A. Shields
,
Inga J. Smith
,
Michael Sprenger
,
Luke Trusel
,
Danielle Udy
,
Tessa Vance
,
Étienne Vignon
,
Catherine Walker
,
Nander Wever
, and
Xun Zou

Abstract

Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. This record-shattering event saw numerous monthly temperature records being broken including a new all-time temperature record of −9.4°C on 18 March at Concordia Station despite March typically being a transition month to the Antarctic coreless winter. The driver for these temperature extremes was an intense atmospheric river advecting subtropical/midlatitude heat and moisture deep into the Antarctic interior. The scope of the temperature records spurred a large, diverse collaborative effort to study the heat wave’s meteorological drivers, impacts, and historical climate context. Here we focus on describing those temperature records along with the intricate meteorological drivers that led to the most intense atmospheric river observed over East Antarctica. These efforts describe the Rossby wave activity forced from intense tropical convection over the Indian Ocean. This led to an atmospheric river and warm conveyor belt intensification near the coastline, which reinforced atmospheric blocking deep into East Antarctica. The resulting moisture flux and upper-level warm-air advection eroded the typical surface temperature inversions over the ice sheet. At the peak of the heat wave, an area of 3.3 million km2 in East Antarctica exceeded previous March monthly temperature records. Despite a temperature anomaly return time of about 100 years, a closer recurrence of such an event is possible under future climate projections. In Part II we describe the various impacts this extreme event had on the East Antarctic cryosphere.

Significance Statement

In March 2022, a heat wave and atmospheric river caused some of the highest temperature anomalies ever observed globally and captured the attention of the Antarctic science community. Using our diverse collective expertise, we explored the causes of the event and have placed it within a historical climate context. One key takeaway is that Antarctic climate extremes are highly sensitive to perturbations in the midlatitudes and subtropics. This heat wave redefined our expectations of the Antarctic climate. Despite the rare chance of occurrence based on past climate, a future temperature extreme event of similar magnitude is possible, especially given anthropogenic climate change.

Open access
Jonathan D. Wille
,
Simon P. Alexander
,
Charles Amory
,
Rebecca Baiman
,
Léonard Barthélemy
,
Dana M. Bergstrom
,
Alexis Berne
,
Hanin Binder
,
Juliette Blanchet
,
Deniz Bozkurt
,
Thomas J. Bracegirdle
,
Mathieu Casado
,
Taejin Choi
,
Kyle R. Clem
,
Francis Codron
,
Rajashree Datta
,
Stefano Di Battista
,
Vincent Favier
,
Diana Francis
,
Alexander D. Fraser
,
Elise Fourré
,
René D. Garreaud
,
Christophe Genthon
,
Irina V. Gorodetskaya
,
Sergi González-Herrero
,
Victoria J. Heinrich
,
Guillaume Hubert
,
Hanna Joos
,
Seong-Joong Kim
,
John C. King
,
Christoph Kittel
,
Amaelle Landais
,
Matthew Lazzara
,
Gregory H. Leonard
,
Jan L. Lieser
,
Michelle Maclennan
,
David Mikolajczyk
,
Peter Neff
,
Inès Ollivier
,
Ghislain Picard
,
Benjamin Pohl
,
F. Martin Ralph
,
Penny Rowe
,
Elisabeth Schlosser
,
Christine A. Shields
,
Inga J. Smith
,
Michael Sprenger
,
Luke Trusel
,
Danielle Udy
,
Tessa Vance
,
Étienne Vignon
,
Catherine Walker
,
Nander Wever
, and
Xun Zou

Abstract

Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) that caused these record-shattering temperature anomalies. Here, we continue our large collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt that was recorded along coastal areas, but this was outweighed by widespread high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Last, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea ice extent.

Significance Statement

Using our diverse collective expertise, we explored the impacts from the March 2022 heat wave and atmospheric river across East Antarctica. One key takeaway is that the Antarctic cryosphere is highly sensitive to meteorological extremes originating from the midlatitudes and subtropics. Despite the large positive temperature anomalies driven from strong downward longwave radiation, this event led to huge amounts of snowfall across the Antarctic interior desert. The isotopes in this snow of warm airmass origin will likely be detectable in future ice cores and potentially distort past climate reconstructions. Even measurements of space activity were affected. Also, the swells generated from this storm helped to trigger the final collapse of an already critically unstable Conger Ice Shelf while further degrading sea ice coverage.

Open access