Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: W J. Randel x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
G. L. Manney and W. J. Randel

Abstract

Studies using, climatological fields in a three-dimensional stability model show unstable modes near the polar winter stratopause with periods neat 4 days. The calculated modes exhibit equatorward momentum and heat fluxes near the stratopause, similar to characteristics of observed 4-day wave events, demonstrating that both baroclinic and barotropic processes are important for this instability. The baroclinic and baratropic components are considered separately by selectively removing either horizontal or vertical shear from the background flow. Although both situations reveal instability, growth rates are very slow; realistic growth rates occur only for climatological flows including both horizontal and vertical shears. Similar unstable, fast-moving waves are found near the polar stratopause for several winter months in both hemispheres.

Full access
Darryn W. Waugh and William J. Randel

Abstract

The climatological structure, and interannual variability, of the Arctic and Antarctic stratospheric polar vortices are examined by analysis of elliptical diagnostics applied to over 19 yr of potential vorticity data. The elliptical diagnostics define the area, center, elongation, and orientation of each vortex and are used to quantify their structure and evolution. The diagnostics offer a novel view of the well-known differences in the climatological structure of the polar vortices. Although both vortices form in autumn to early winter, the Arctic vortex has a shorter life span and breaks down over a month before the Antarctic vortex. There are substantial differences in the distortion of the vortices from zonal symmetry; the Arctic vortex is displaced farther off the pole and is more elongated than the Antarctic vortex. While there is a midwinter minimum in the distortion of the Antarctic vortex, the distortion of the Arctic vortex increases during its life cycle. There are also large differences in the interannual variability of the vortices: the variability of the Antarctic vortex is small except during the spring vortex breakdown, whereas the Arctic vortex is highly variable throughout its life cycle, particularly in late winter. The diagnostics also reveal features not apparent in previous studies. There are periods when there are large zonal shifts (westward then eastward) in the climatological locations of the vortices: early winter for the Arctic vortex, and late winter to spring for the Antarctic vortex. Also, there are two preferred longitudes of the center of the lower-stratospheric Arctic vortex in early winter, and the vortex may move rapidly from one to the other. In the middle and upper stratosphere large displacements off the pole and large elongation of the vortex are both associated with a small vortex area, but there is very little correlation between displacement off the pole and elongation of the vortex.

Full access
William J. Randel, Fei Wu, James M. Russell III, Aidan Roche, and Joe W. Waters

Abstract

Measurements of stratospheric methane (CH4) and water vapor (H2O) are used to investigate seasonal and interannual variability in stratospheric transport. Data are from the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) spanning 1991–97. Profile measurements are binned according to analyzed potential vorticity fields (equivalent latitude mapping), and seasonal cycles are fit using harmonic regression analysis. Methane data from the UARS Cryogenic Limb Array Etalon Spectrometer and water vapor from the Microwave Limb Sounder are also used to fill in winter polar latitudes (where HALOE measurements are unavailable), yielding complete global seasonal cycles. These data reveal well-known seasonal variations with novel detail, including 1) the presence of enhanced latitudinal gradients (mixing barriers) in the subtropics and across the polar vortices, 2) strong descent inside the polar vortices during winter and spring, and 3) vigorous seasonality in the tropical upper stratosphere, related to seasonal upwelling and the semiannual oscillation. The observed variations are in agreement with aspects of the mean meridional circulation derived from stratospheric meteorological analyses. Interannual variations are also investigated, and a majority of the variance is found to be coherent with the equatorial quasibiennial oscillation (QBO). Strong QBO influence is found in the tropical upper stratosphere: the double-peaked “rabbit ears” structure occurs primarily during QBO westerlies. The QBO also modulates the latitudinal position of the tropical “reservoir” in the middle stratosphere.

Full access
N. Calvo, R. R. Garcia, W. J. Randel, and D. R. Marsh

Abstract

The Brewer–Dobson circulation strengthens in the lowermost tropical stratosphere during warm El Niño–Southern Oscillation (ENSO) events. Dynamical analyses using the most recent version of the Whole Atmosphere Community Climate Model show that this is due mainly to anomalous forcing by orographic gravity waves, which maximizes in the Northern Hemisphere subtropics between 18 and 22 km, especially during the strongest warm ENSO episodes. Anomalies in the meridional gradient of temperature in the upper troposphere and lower stratosphere (UTLS) are produced during warm ENSO events, accompanied by anomalies in the location and intensity of the subtropical jets. This anomalous wind pattern alters the propagation and dissipation of the parameterized gravity waves, which ultimately force increases in tropical upwelling in the lowermost stratosphere. During cold ENSO events a similar signal, but of opposite sign, is present in the model simulations. The signals in ozone and water vapor produced by ENSO events in the UTLS are also investigated.

Full access