Search Results
Abstract
An improved stochastic kinetic energy backscatter scheme, version 2 (SKEB2) has been developed for the Met Office Global and Regional Ensemble Prediction System (MOGREPS). Wind increments at each model time step are derived from a streamfunction forcing pattern that is modulated by a locally diagnosed field of likely energy loss due to numerical smoothing and unrepresented convective sources of kinetic energy near the grid scale. The scheme has a positive impact on the root-mean-square error of the ensemble mean and spread of the ensemble. An improved growth rate of spread results in a better match with ensemble-mean forecast error at all forecast lead times, with a corresponding improvement in probabilistic forecast skill from a more realistic representation of model error. Other examples of positive impact include improved forecast blocking frequency and reduced forecast jumpiness. The paper describes the formulation of the SKEB2 and its assessment in various experiments.
Abstract
An improved stochastic kinetic energy backscatter scheme, version 2 (SKEB2) has been developed for the Met Office Global and Regional Ensemble Prediction System (MOGREPS). Wind increments at each model time step are derived from a streamfunction forcing pattern that is modulated by a locally diagnosed field of likely energy loss due to numerical smoothing and unrepresented convective sources of kinetic energy near the grid scale. The scheme has a positive impact on the root-mean-square error of the ensemble mean and spread of the ensemble. An improved growth rate of spread results in a better match with ensemble-mean forecast error at all forecast lead times, with a corresponding improvement in probabilistic forecast skill from a more realistic representation of model error. Other examples of positive impact include improved forecast blocking frequency and reduced forecast jumpiness. The paper describes the formulation of the SKEB2 and its assessment in various experiments.