Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: Wei Yu x
- Journal of the Atmospheric Sciences x
- Refine by Access: All Content x
Abstract
The generation of multiple wave couplets with deep tropospheric downdrafts/updrafts by convection is explored through idealized 2D moist numerical simulations as well as dry experiments with prescribed artificial latent heating. These wave couplets are capable of horizontally propagating over a long distance at a fast speed with vertical motions spanning the entire troposphere. The timing of wave generation is determined by the variation in the local heating rate, which arose from the imbalances among latent heating, nonlinear advection, and adiabatic heating/cooling. The amplitudes of wave couplets also correspond well with the strength of the local heating rate. The heat budget analysis highlights the crucial roles of both latent heating and nonlinear advection in the generation of the tropospheric wave couplets. Strong latent heating induces the thermodynamic imbalance and thus triggers waves. Meanwhile, latent heating also increases vertical motion in the source region and thus enhances nonlinear advection through transferring heat upward. Nonlinear advection, which has a comparable magnitude to latent heating in the upper troposphere, partially offsets the balancing effect of adiabatic heating/cooling, and results in a more persistent imbalance at high levels, allowing for the emission of consecutive waves even when latent heating becomes weak. In the simulation with weak nonlinear advection, fewer wave couplets are found, as the effect of latent heating is more easily offset by adiabatic cooling before it weakens.
Significance Statement
The generation of gravity waves in the troposphere by convection is of significant importance in the fields of atmospheric science and meteorology. The waves play a crucial role in the initiation and organization of convection, and the parameterization of wave momentum flux in global numerical models. This study aimed to investigate the generation of wave couplets in the troposphere through idealized numerical simulations with varying prescribed latent heating. The results showed that gravity wave couplets were generated in succession as a result of the imbalances among latent heating, nonlinear advection, and adiabatic heating/cooling. This study highlighted an important but yet complex issue of gravity waves being generated within convection by nonlinear sources other than latent heating, which had been neglected in many recent studies on the topic. These findings deepened our understanding of convectively generated gravity waves and paved the way for coupled wave–convection relationship studies.
Abstract
The generation of multiple wave couplets with deep tropospheric downdrafts/updrafts by convection is explored through idealized 2D moist numerical simulations as well as dry experiments with prescribed artificial latent heating. These wave couplets are capable of horizontally propagating over a long distance at a fast speed with vertical motions spanning the entire troposphere. The timing of wave generation is determined by the variation in the local heating rate, which arose from the imbalances among latent heating, nonlinear advection, and adiabatic heating/cooling. The amplitudes of wave couplets also correspond well with the strength of the local heating rate. The heat budget analysis highlights the crucial roles of both latent heating and nonlinear advection in the generation of the tropospheric wave couplets. Strong latent heating induces the thermodynamic imbalance and thus triggers waves. Meanwhile, latent heating also increases vertical motion in the source region and thus enhances nonlinear advection through transferring heat upward. Nonlinear advection, which has a comparable magnitude to latent heating in the upper troposphere, partially offsets the balancing effect of adiabatic heating/cooling, and results in a more persistent imbalance at high levels, allowing for the emission of consecutive waves even when latent heating becomes weak. In the simulation with weak nonlinear advection, fewer wave couplets are found, as the effect of latent heating is more easily offset by adiabatic cooling before it weakens.
Significance Statement
The generation of gravity waves in the troposphere by convection is of significant importance in the fields of atmospheric science and meteorology. The waves play a crucial role in the initiation and organization of convection, and the parameterization of wave momentum flux in global numerical models. This study aimed to investigate the generation of wave couplets in the troposphere through idealized numerical simulations with varying prescribed latent heating. The results showed that gravity wave couplets were generated in succession as a result of the imbalances among latent heating, nonlinear advection, and adiabatic heating/cooling. This study highlighted an important but yet complex issue of gravity waves being generated within convection by nonlinear sources other than latent heating, which had been neglected in many recent studies on the topic. These findings deepened our understanding of convectively generated gravity waves and paved the way for coupled wave–convection relationship studies.
Abstract
Soil moisture heterogeneity can induce mesoscale circulations due to differential heating between dry and wet surfaces, which can, in turn, trigger precipitation. In this work, we conduct cloud-permitting simulations over a 100 km × 25 km idealized land surface, with the domain split equally between a wet region and a dry region, each with homogeneous soil moisture. In contrast to previous studies that prescribed initial atmospheric profiles, each simulation is run with fixed soil moisture for 100 days to allow the atmosphere to equilibrate to the given land surface rather than prescribing the initial atmospheric profile. It is then run for one additional day, allowing the soil moisture to freely vary. Soil moisture controls the resulting precipitation over the dry region through three different mechanisms: as the dry domain gets drier, (i) the mesoscale circulation strengthens, increasing water vapor convergence over the dry domain, (ii) surface evaporation declines over the dry domain, decreasing water vapor convergence over the dry domain, and (iii) precipitation efficiency declines due to increased reevaporation, meaning proportionally less water vapor over the dry domain becomes surface precipitation. We find that the third mechanism dominates when soil moisture is small in the dry domain: drier soils ultimately lead to less precipitation in the dry domain due to its impact on precipitation efficiency. This work highlights an important new mechanism by which soil moisture controls precipitation, through its impact on precipitation reevaporation and efficiency.
Abstract
Soil moisture heterogeneity can induce mesoscale circulations due to differential heating between dry and wet surfaces, which can, in turn, trigger precipitation. In this work, we conduct cloud-permitting simulations over a 100 km × 25 km idealized land surface, with the domain split equally between a wet region and a dry region, each with homogeneous soil moisture. In contrast to previous studies that prescribed initial atmospheric profiles, each simulation is run with fixed soil moisture for 100 days to allow the atmosphere to equilibrate to the given land surface rather than prescribing the initial atmospheric profile. It is then run for one additional day, allowing the soil moisture to freely vary. Soil moisture controls the resulting precipitation over the dry region through three different mechanisms: as the dry domain gets drier, (i) the mesoscale circulation strengthens, increasing water vapor convergence over the dry domain, (ii) surface evaporation declines over the dry domain, decreasing water vapor convergence over the dry domain, and (iii) precipitation efficiency declines due to increased reevaporation, meaning proportionally less water vapor over the dry domain becomes surface precipitation. We find that the third mechanism dominates when soil moisture is small in the dry domain: drier soils ultimately lead to less precipitation in the dry domain due to its impact on precipitation efficiency. This work highlights an important new mechanism by which soil moisture controls precipitation, through its impact on precipitation reevaporation and efficiency.
Abstract
The effect of eddy diffusion in an interactive two-dimensional model of the stratosphere is reexamined. The model consists of a primitive equation dynamics module, a simplified HO x ozone model and a full radiative transfer scheme. The diabatic/residual circulation in the model stratosphere is maintained by the following processes: 1) nonlocal forcing resulting from dissipation in the parameterized model troposphere and frictional drag at mesospheric levels, 2) mechanical damping within the stratosphere itself, and 3) potential vorticity flux due to large scale waves. The net effect of each process is discussed in terms of the efficiency of the induced circulation in transporting ozone from the equatorial lower stratosphere to high latitude regions. The same eddy diffusion coefficients are used to parameterize the flux of quasi-geostrophic potential vorticity and diffusion in the tracer transport equation. It is shown that the ozone distributions generated with the interactive two-dimensional model are very sensitive to the choice of values for the friction and the eddy diffusion coefficients. The strength of the circulation increases with the mechanical damping and Kyy . At the same time, larger diffusion in the tracer transport equation reduces the equator to pole transport (Holton 1986). Depending on the amount of friction assumed in the stratosphere, increasing eddy diffusion can lead to an increase as well as a decrease in the net transport. It is shown that reasonable latitudinal gradients of ozone can be obtained by using small values for the mechanical damping [≈1/(100 days)] and Kyy (order 104 m2 s−1) for the mid- and high-latitude stratosphere.
Abstract
The effect of eddy diffusion in an interactive two-dimensional model of the stratosphere is reexamined. The model consists of a primitive equation dynamics module, a simplified HO x ozone model and a full radiative transfer scheme. The diabatic/residual circulation in the model stratosphere is maintained by the following processes: 1) nonlocal forcing resulting from dissipation in the parameterized model troposphere and frictional drag at mesospheric levels, 2) mechanical damping within the stratosphere itself, and 3) potential vorticity flux due to large scale waves. The net effect of each process is discussed in terms of the efficiency of the induced circulation in transporting ozone from the equatorial lower stratosphere to high latitude regions. The same eddy diffusion coefficients are used to parameterize the flux of quasi-geostrophic potential vorticity and diffusion in the tracer transport equation. It is shown that the ozone distributions generated with the interactive two-dimensional model are very sensitive to the choice of values for the friction and the eddy diffusion coefficients. The strength of the circulation increases with the mechanical damping and Kyy . At the same time, larger diffusion in the tracer transport equation reduces the equator to pole transport (Holton 1986). Depending on the amount of friction assumed in the stratosphere, increasing eddy diffusion can lead to an increase as well as a decrease in the net transport. It is shown that reasonable latitudinal gradients of ozone can be obtained by using small values for the mechanical damping [≈1/(100 days)] and Kyy (order 104 m2 s−1) for the mid- and high-latitude stratosphere.
Abstract
A new k-distribution scheme of longwave radiation without the correlated-k-distribution assumption is developed. Grouping of spectral points is based on the line-by-line (LBL)-calculated absorption coefficient k at a few sets of reference pressure p
r
and temperature θ
r
, where the cooling rate is substantial in a spectral band. In this new scheme, the range of k(p
r
, θ
r
) of a band is divided into a number of equal intervals, or g groups, in log10(k
r
). A spectral point at the wavenumber ν is identified with one of the g groups according to its k
ν
(p
r
, θ
r
). For each g group, a Planck-weighted k-distribution function H
g
and a nonlinearly averaged absorption coefficient
Abstract
A new k-distribution scheme of longwave radiation without the correlated-k-distribution assumption is developed. Grouping of spectral points is based on the line-by-line (LBL)-calculated absorption coefficient k at a few sets of reference pressure p
r
and temperature θ
r
, where the cooling rate is substantial in a spectral band. In this new scheme, the range of k(p
r
, θ
r
) of a band is divided into a number of equal intervals, or g groups, in log10(k
r
). A spectral point at the wavenumber ν is identified with one of the g groups according to its k
ν
(p
r
, θ
r
). For each g group, a Planck-weighted k-distribution function H
g
and a nonlinearly averaged absorption coefficient