Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Yingchun Wang x
- Refine by Access: All Content x
Abstract
The Variational Doppler Radar Analysis System (VDRAS) was implemented in Beijing, China, and contributed to the Beijing 2008 Forecast Demonstration Project (B08FDP) in support of the Beijing Summer Olympics. VDRAS is a four-dimensional variational data assimilation system that produces frequently updated analyses using Doppler radar radial velocities and reflectivities, surface observations, and mesoscale model data. The system was tested in real time during the B08FDP pretrials in the summers of 2006 and 2007 and run during the Olympics to assist the 0–6-h convective weather nowcasting. This paper provides a description of the upgraded system and its Beijing implementation, an evaluation of the system performance using data collected during the pretrials, and its utility on convective weather nowcasting through two case studies. Verification of VDRAS wind against a wind profiler shows that the analyzed wind is reasonably accurate with a smaller RMS difference for 2006 than for 2007 due to better radar data coverage in 2006. The analyzed cold pools in three convective episodes are compared with surface observations at selected stations. The result shows good agreement between the analysis and the observations. The two case studies demonstrate the role that VDRAS could play in nowcasting convective initiation.
Abstract
The Variational Doppler Radar Analysis System (VDRAS) was implemented in Beijing, China, and contributed to the Beijing 2008 Forecast Demonstration Project (B08FDP) in support of the Beijing Summer Olympics. VDRAS is a four-dimensional variational data assimilation system that produces frequently updated analyses using Doppler radar radial velocities and reflectivities, surface observations, and mesoscale model data. The system was tested in real time during the B08FDP pretrials in the summers of 2006 and 2007 and run during the Olympics to assist the 0–6-h convective weather nowcasting. This paper provides a description of the upgraded system and its Beijing implementation, an evaluation of the system performance using data collected during the pretrials, and its utility on convective weather nowcasting through two case studies. Verification of VDRAS wind against a wind profiler shows that the analyzed wind is reasonably accurate with a smaller RMS difference for 2006 than for 2007 due to better radar data coverage in 2006. The analyzed cold pools in three convective episodes are compared with surface observations at selected stations. The result shows good agreement between the analysis and the observations. The two case studies demonstrate the role that VDRAS could play in nowcasting convective initiation.
Abstract
This study investigates interactive effects from the Beijing urban area on temperature, humidity, wind speed and direction, and precipitation by use of hourly automatic weather station data from June to August 2008–12. Results show the Beijing summer urban heat island (UHI) as a multicenter distribution (corresponding to underlying land-use features), with stronger nighttime than daytime values (averages of 1.7° vs 0.8°C, respectively). Specific humidity was lower in urban Beijing than in surrounding nonurban areas, and this urban dry island is stronger during day than night (maximum of −2.4 vs −1.9 g kg−1). Wind direction is affected by both a mountain–valley-breeze circulation and by urbanization. Morning low-level flows converged into the strong UHI, but afternoon and evening southerly winds were bifurcated by an urban building-barrier-induced divergence. Summer thunderstorms also thus bifurcated and bypassed the urban center because of the building-barrier effect during both daytime and nighttime weak-UHI (<1.25°C) periods. This produced a regional-normalized rainfall (NR) minimum in the urban center and directly downwind of the urban area (of up to −35%), with maximum values along its downwind lateral edges (of >15%). Strong UHIs (>1.25°C), however, induced or enhanced thunderstorm formation (again day and night), which produced an NR maximum in the most urbanized area of up to 75%.
Abstract
This study investigates interactive effects from the Beijing urban area on temperature, humidity, wind speed and direction, and precipitation by use of hourly automatic weather station data from June to August 2008–12. Results show the Beijing summer urban heat island (UHI) as a multicenter distribution (corresponding to underlying land-use features), with stronger nighttime than daytime values (averages of 1.7° vs 0.8°C, respectively). Specific humidity was lower in urban Beijing than in surrounding nonurban areas, and this urban dry island is stronger during day than night (maximum of −2.4 vs −1.9 g kg−1). Wind direction is affected by both a mountain–valley-breeze circulation and by urbanization. Morning low-level flows converged into the strong UHI, but afternoon and evening southerly winds were bifurcated by an urban building-barrier-induced divergence. Summer thunderstorms also thus bifurcated and bypassed the urban center because of the building-barrier effect during both daytime and nighttime weak-UHI (<1.25°C) periods. This produced a regional-normalized rainfall (NR) minimum in the urban center and directly downwind of the urban area (of up to −35%), with maximum values along its downwind lateral edges (of >15%). Strong UHIs (>1.25°C), however, induced or enhanced thunderstorm formation (again day and night), which produced an NR maximum in the most urbanized area of up to 75%.
Abstract
In this paper, the characteristics of urban heat island (UHI) and boundary layer structures in the Beijing area, China, are analyzed using conventional and Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The Weather Research and Forecasting (WRF) model coupled with a single-layer urban canopy model (UCM) is used to simulate these urban weather features for comparison with observations. WRF is also used to test the sensitivity of model simulations to different urban land use scenarios and urban building structures to investigate the impacts of urbanization on surface weather and boundary layer structures. Results show that the coupled WRF/Noah/UCM modeling system seems to be able to reproduce the following observed features reasonably well: 1) the diurnal variation of UHI intensity; 2) the spatial distribution of UHI in Beijing; 3) the diurnal variation of wind speed and direction, and interactions between mountain–valley circulations and UHI; 4) small-scale boundary layer convective rolls and cells; and 5) the nocturnal boundary layer lower-level jet. The statistical analyses reveal that urban canopy variables (e.g., temperature, wind speed) from WRF/Noah/UCM compare better with surface observations than the conventional variables (e.g., 2-m temperature, 10-m wind speed). Both observations and the model show that the airflow over Beijing is dominated by mountain–valley flows that are modified by urban–rural circulations. Sensitivity tests imply that the presence or absence of urban surfaces significantly impacts the formation of horizontal convective rolls (HCRs), and the details in urban structures seem to have less pronounced but not negligible effects on HCRs.
Abstract
In this paper, the characteristics of urban heat island (UHI) and boundary layer structures in the Beijing area, China, are analyzed using conventional and Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The Weather Research and Forecasting (WRF) model coupled with a single-layer urban canopy model (UCM) is used to simulate these urban weather features for comparison with observations. WRF is also used to test the sensitivity of model simulations to different urban land use scenarios and urban building structures to investigate the impacts of urbanization on surface weather and boundary layer structures. Results show that the coupled WRF/Noah/UCM modeling system seems to be able to reproduce the following observed features reasonably well: 1) the diurnal variation of UHI intensity; 2) the spatial distribution of UHI in Beijing; 3) the diurnal variation of wind speed and direction, and interactions between mountain–valley circulations and UHI; 4) small-scale boundary layer convective rolls and cells; and 5) the nocturnal boundary layer lower-level jet. The statistical analyses reveal that urban canopy variables (e.g., temperature, wind speed) from WRF/Noah/UCM compare better with surface observations than the conventional variables (e.g., 2-m temperature, 10-m wind speed). Both observations and the model show that the airflow over Beijing is dominated by mountain–valley flows that are modified by urban–rural circulations. Sensitivity tests imply that the presence or absence of urban surfaces significantly impacts the formation of horizontal convective rolls (HCRs), and the details in urban structures seem to have less pronounced but not negligible effects on HCRs.