Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: A. Biastoch x
  • Refine by Access: All Content x
Clear All Modify Search
F. Álvarez-García
,
M. Latif
, and
A. Biastoch

Abstract

Observed sea surface temperatures (SSTs) in the North Atlantic from 1958 through 2000, as well as data from an ocean model simulation driven with the atmospheric variability observed during the same period, are examined using multichannel singular spectrum analysis. The two leading oscillatory modes are associated with a multidecadal and a quasi-decadal period. The former is connected to a basinwide uniform SST pattern and changes in the deep North Atlantic meridional overturning circulation. The quasi-decadal mode involves a tripolar SST anomaly pattern forced by atmospheric variability with a spatial structure resembling that of the North Atlantic Oscillation (NAO). The upper ocean’s dynamical response to this NAO variability provides an instantaneous positive feedback to the SST pattern, while a delayed negative feedback is due to shallow overturning circulation anomalies.

Full access
K. Lorbacher
,
J. Dengg
,
C. W. Böning
, and
A. Biastoch

Abstract

Some studies of ocean climate model experiments suggest that regional changes in dynamic sea level could provide a valuable indicator of trends in the strength of the Atlantic meridional overturning circulation (MOC). This paper describes the use of a sequence of global ocean–ice model experiments to show that the diagnosed patterns of sea surface height (SSH) anomalies associated with changes in the MOC in the North Atlantic (NA) depend critically on the time scales of interest. Model hindcast simulations for 1958–2004 reproduce the observed pattern of SSH variability with extrema occurring along the Gulf Stream (GS) and in the subpolar gyre (SPG), but they also show that the pattern is primarily related to the wind-driven variability of MOC and gyre circulation on interannual time scales; it is reflected also in the leading EOF of SSH variability over the NA Ocean, as described in previous studies. The pattern, however, is not useful as a “fingerprint” of longer-term changes in the MOC: as shown with a companion experiment, a multidecadal, gradual decline in the MOC [of 5 Sv (1 Sv ≡ 106 m3 s−1) over 5 decades] induces a much broader, basin-scale SSH rise over the mid-to-high-latitude NA, with amplitudes of 20 cm. The detectability of such a trend is low along the GS since low-frequency SSH changes are effectively masked here by strong variability on shorter time scales. More favorable signal-to-noise ratios are found in the SPG and the eastern NA, where a MOC trend of 0.1 Sv yr−1 would leave a significant imprint in SSH already after about 20 years.

Full access
Kevin G. Speer
,
H-J. Isemer
, and
A. Biastoch

Abstract

Surface heat and freshwater fluxes from the Comprehensive 0cean-Atmosphere Data Set are revised and used diagnostically to compute air-sea transformation rates on density, temperature, and salinity classes over the domain of the data. Maximum rates occur over the warmest water and over mode waters, which are the dominant result of air-sea interaction. Transformation in different is accordingly distinguished by temperature and salinity, just as water masses in different oceans are so distinguished. Over the entire domain, to about 30°S, approximately 80×106 m3 s−1 of warm cool water are transformed by air-sea fluxes, on annual average. Calculations for several seas in the North Atlantic, where deep water is thought to originate, we also presented.

Full access
M. Latif
,
C. Böning
,
J. Willebrand
,
A. Biastoch
,
J. Dengg
,
N. Keenlyside
,
U. Schweckendiek
, and
G. Madec

Abstract

Analyses of ocean observations and model simulations suggest that there have been considerable changes in the thermohaline circulation (THC) during the last century. These changes are likely to be the result of natural multidecadal climate variability and are driven by low-frequency variations of the North Atlantic Oscillation (NAO) through changes in Labrador Sea convection. Indications of a sustained THC weakening are not seen during the last few decades. Instead, a strengthening since the 1980s is observed. The combined assessment of ocean hydrography data and model results indicates that the expected anthropogenic weakening of the THC will remain within the range of natural variability during the next several decades.

Full access
A. Biastoch
,
L. M. Beal
,
J. R. E. Lutjeharms
, and
T. G. D. Casal

Abstract

The Agulhas Current system has been analyzed in a nested high-resolution ocean model and compared to observations. The model shows good performance in the western boundary current structure and the transports off the South African coast. This includes the simulation of the northward-flowing Agulhas Undercurrent. It is demonstrated that fluctuations of the Agulhas Current and Undercurrent around 50–70 days are due to Natal pulses and Mozambique eddies propagating downstream. A sensitivity experiment that excludes those upstream perturbations significantly reduces the variability as well as the mean transport of the undercurrent. Although the model simulates undercurrents in the Mozambique Channel and east of Madagascar, there is no direct connection between those and the Agulhas Undercurrent. Virtual float releases demonstrate that topography is effectively blocking the flow toward the north.

Full access