Search Results
You are looking at 1 - 10 of 17 items for
- Author or Editor: A. Boone x
- Refine by Access: All Content x
Abstract
Six modes of complexity of the Chameleon land surface model (CHASM) are used to explore the relationship between the complexity of the surface energy balance (SEB) formulation and the capacity of the model to explain intermodel variations in results from the Rhône-Aggregation Intercomparison Project (Rhône-AGG). At an annual time scale, differences between models identified in the Rhône-AGG experiments in the partitioning of available energy and water at the spatial scale of the Rhône Basin can be reproduced by CHASM via variations in the SEB complexity. Only two changes in the SEB complexity in the model generate statistically significant differences in the mean latent heat flux. These are the addition of a constant surface resistance to the simplest mode of CHASM and the addition of tiling and temporally and spatially variable surface resistance to produce the most complex model. Further, the only statistically significant differences in runoff occur following the addition of a constant surface resistance to the simplest mode of CHASM. As the time scale is reduced from annual to monthly, specific mechanisms begin to dominate the simulations produced by each Rhône-AGG model and introduce parameterization-specific behavior that depends on the time evolution of processes operating on longer time scales. CHASM cannot capture all this behavior by varying the SEB complexity, demonstrating the contribution to intermodel differences by hydrology and snow-related processes. Despite the increasing role of hydrology and snow in simulating processes at finer time scales, provided the constant surface resistance is included, CHASM's modes perform within the range of uncertainty illustrated by other Rhône-AGG models on seasonal and annual time scales.
Abstract
Six modes of complexity of the Chameleon land surface model (CHASM) are used to explore the relationship between the complexity of the surface energy balance (SEB) formulation and the capacity of the model to explain intermodel variations in results from the Rhône-Aggregation Intercomparison Project (Rhône-AGG). At an annual time scale, differences between models identified in the Rhône-AGG experiments in the partitioning of available energy and water at the spatial scale of the Rhône Basin can be reproduced by CHASM via variations in the SEB complexity. Only two changes in the SEB complexity in the model generate statistically significant differences in the mean latent heat flux. These are the addition of a constant surface resistance to the simplest mode of CHASM and the addition of tiling and temporally and spatially variable surface resistance to produce the most complex model. Further, the only statistically significant differences in runoff occur following the addition of a constant surface resistance to the simplest mode of CHASM. As the time scale is reduced from annual to monthly, specific mechanisms begin to dominate the simulations produced by each Rhône-AGG model and introduce parameterization-specific behavior that depends on the time evolution of processes operating on longer time scales. CHASM cannot capture all this behavior by varying the SEB complexity, demonstrating the contribution to intermodel differences by hydrology and snow-related processes. Despite the increasing role of hydrology and snow in simulating processes at finer time scales, provided the constant surface resistance is included, CHASM's modes perform within the range of uncertainty illustrated by other Rhône-AGG models on seasonal and annual time scales.
Abstract
The interactions between the soil, biosphere, and atmosphere (ISBA) land surface parameterization scheme has been modified to include soil ice. The liquid water equivalent volumetric ice content is modeled using two reservoirs within the soil: a thin surface layer that directly affects the surface energy balance, and a deep soil layer. The freezing/drying, wetting/thawing analogy is used, and a description of the modifications to the ISBA force–restore scheme, in particular to the hydrological and thermal transfer coefficients, is presented. In addition, the ISBA surface/vegetation scheme is coupled to a multilayer explicit diffusion soil heat and mass transfer model in order to investigate the accuracy of the force–restore formalism soil freezing parameterization as compared with a higher-order scheme.
An example of the influence of the inclusion of soil freezing in ISBA on predicted surface and soil temperatures and surface fluxes is examined using prescribed atmospheric forcing from a micrometeorological case study that includes freeze–thaw cycles. Surface temperature prediction is improved in comparison with the observed values, especially at night, primarily from the release of latent heat as the soil freezes. There is an improvement in the overall surface flux prediction, although for some specific periods there is increased error in the prediction of various components of the surface energy budget. Last, the simplified force–restore approach is found to produce surface flux and temperature predictions consistent with the higher-resolution model on typical numerical weather prediction model timescales (on the order of several days to two weeks) for this particular site.
Abstract
The interactions between the soil, biosphere, and atmosphere (ISBA) land surface parameterization scheme has been modified to include soil ice. The liquid water equivalent volumetric ice content is modeled using two reservoirs within the soil: a thin surface layer that directly affects the surface energy balance, and a deep soil layer. The freezing/drying, wetting/thawing analogy is used, and a description of the modifications to the ISBA force–restore scheme, in particular to the hydrological and thermal transfer coefficients, is presented. In addition, the ISBA surface/vegetation scheme is coupled to a multilayer explicit diffusion soil heat and mass transfer model in order to investigate the accuracy of the force–restore formalism soil freezing parameterization as compared with a higher-order scheme.
An example of the influence of the inclusion of soil freezing in ISBA on predicted surface and soil temperatures and surface fluxes is examined using prescribed atmospheric forcing from a micrometeorological case study that includes freeze–thaw cycles. Surface temperature prediction is improved in comparison with the observed values, especially at night, primarily from the release of latent heat as the soil freezes. There is an improvement in the overall surface flux prediction, although for some specific periods there is increased error in the prediction of various components of the surface energy budget. Last, the simplified force–restore approach is found to produce surface flux and temperature predictions consistent with the higher-resolution model on typical numerical weather prediction model timescales (on the order of several days to two weeks) for this particular site.
Abstract
This study focuses on the influence of an exponential profile of saturated hydraulic conductivity, k sat, with soil depth on the water budget simulated by the Interaction Soil Biosphere Atmosphere (ISBA) land surface model over the French Rhône River basin. With this exponential profile, the saturated hydraulic conductivity at the surface increases by approximately a factor of 10, and its mean value increases in the root zone and decreases in the deeper region of the soil in comparison with the values given by Clapp and Hornberger. This new version of ISBA is compared to the original version in offline simulations using the Rhône-Aggregation high-resolution database. Low-resolution simulations, where all atmospheric data and surface parameters have been aggregated, are also performed to test the impact of the modified k sat profile at the typical scale of a climate model. The simulated discharges are compared to observations from a dense network consisting of 88 gauging stations.
Results of the high-resolution experiments show that the exponential profile of k sat globally improves the simulated discharges and that the assumption of an increase in saturated hydraulic conductivity from the soil surface to a depth close to the rooting depth in comparison with values given by Clapp and Hornberger is reasonable. Results of the scaling experiments indicate that this parameterization is also suitable for large-scale hydrological applications. Nevertheless, low-resolution simulations with both model versions overestimate evapotranspiration (especially from the plant transpiration and the wet fraction of the canopy) to the detriment of total runoff, which emphasizes the need for implementing subgrid distribution of precipitation and land surface properties in large-scale hydrological applications.
Abstract
This study focuses on the influence of an exponential profile of saturated hydraulic conductivity, k sat, with soil depth on the water budget simulated by the Interaction Soil Biosphere Atmosphere (ISBA) land surface model over the French Rhône River basin. With this exponential profile, the saturated hydraulic conductivity at the surface increases by approximately a factor of 10, and its mean value increases in the root zone and decreases in the deeper region of the soil in comparison with the values given by Clapp and Hornberger. This new version of ISBA is compared to the original version in offline simulations using the Rhône-Aggregation high-resolution database. Low-resolution simulations, where all atmospheric data and surface parameters have been aggregated, are also performed to test the impact of the modified k sat profile at the typical scale of a climate model. The simulated discharges are compared to observations from a dense network consisting of 88 gauging stations.
Results of the high-resolution experiments show that the exponential profile of k sat globally improves the simulated discharges and that the assumption of an increase in saturated hydraulic conductivity from the soil surface to a depth close to the rooting depth in comparison with values given by Clapp and Hornberger is reasonable. Results of the scaling experiments indicate that this parameterization is also suitable for large-scale hydrological applications. Nevertheless, low-resolution simulations with both model versions overestimate evapotranspiration (especially from the plant transpiration and the wet fraction of the canopy) to the detriment of total runoff, which emphasizes the need for implementing subgrid distribution of precipitation and land surface properties in large-scale hydrological applications.
Abstract
Comparing streamflow simulations against observations has become a straightforward way to evaluate a land surface model’s (LSM) ability in simulating water budget within a catchment. Using a mesoscale river routing scheme (RRS), this study evaluates simulated streamflows over the upper Ouémé River basin resulting from 14 LSMs within the framework of phase 2 of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project (ALMIP2). The ALMIP2 RRS (ARTS) has been used to route LSM outputs. ARTS is based on the nonlinear Muskingum–Cunge method and a simple deep water infiltration formulation representing water-table recharge as previously observed in that region. Simulations are performed for the 2005–08 period during which ground observations are largely available. Experiments are designed using different ground-based rainfall datasets derived from two interpolation methods: the Thiessen technique and a combined kriging–Lagrangian methodology. LSM-based total runoff (TR) averages vary from 0.07 to 1.97 mm day−1, while optimal TR was estimated as ~0.65 mm day−1. This highly affected the RRS parameterization and streamflow simulations. Optimal Nash–Sutcliffe coefficients for LSM-averaged streamflows varied from 0.66 to 0.92, depending on the gauge station. However, individual LSM performances show a wider range. A more detailed rainfall distribution provided by the kriging–Lagrangian methodology resulted in overall better streamflow simulations. The early runoff generation related to reduced infiltration rates during early rainfall events features as one of the main reasons for poor LSM performances.
Abstract
Comparing streamflow simulations against observations has become a straightforward way to evaluate a land surface model’s (LSM) ability in simulating water budget within a catchment. Using a mesoscale river routing scheme (RRS), this study evaluates simulated streamflows over the upper Ouémé River basin resulting from 14 LSMs within the framework of phase 2 of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project (ALMIP2). The ALMIP2 RRS (ARTS) has been used to route LSM outputs. ARTS is based on the nonlinear Muskingum–Cunge method and a simple deep water infiltration formulation representing water-table recharge as previously observed in that region. Simulations are performed for the 2005–08 period during which ground observations are largely available. Experiments are designed using different ground-based rainfall datasets derived from two interpolation methods: the Thiessen technique and a combined kriging–Lagrangian methodology. LSM-based total runoff (TR) averages vary from 0.07 to 1.97 mm day−1, while optimal TR was estimated as ~0.65 mm day−1. This highly affected the RRS parameterization and streamflow simulations. Optimal Nash–Sutcliffe coefficients for LSM-averaged streamflows varied from 0.66 to 0.92, depending on the gauge station. However, individual LSM performances show a wider range. A more detailed rainfall distribution provided by the kriging–Lagrangian methodology resulted in overall better streamflow simulations. The early runoff generation related to reduced infiltration rates during early rainfall events features as one of the main reasons for poor LSM performances.
Abstract
Achievement of the United Nations Sustainable Development Goals (SDGs) is contingent on understanding the potential interactions among human and natural systems. In Kenya, the goal of conserving and expanding forest cover to achieve SDG 15 “Life on Land” may be related to other SDGs because it plays a role in regulating some aspects of Kenyan precipitation. We present a 40-yr analysis of the sources of precipitation in Kenya and the fate of the evaporation that arises from within Kenya. Using MERRA-2 climate reanalysis and the Water Accounting Model 2 layers, we examine the annual and seasonal changes in moisture sources and sinks. We find that most of Kenya’s precipitation originates as oceanic evaporation but that 10% of its precipitation originates as evaporation within Kenya. This internal recycling is concentrated in the mountainous and forested Kenyan highlands, with some locations recycling more than 15% of evaporation to Kenyan precipitation. We also find that 75% of Kenyan evaporation falls as precipitation elsewhere over land, including 10% in Kenya, 25% in the Democratic Republic of the Congo, and around 5% falling in Tanzania and Uganda. Further, we find a positive relationship between increasing rates of moisture recycling and fractional forest cover within Kenya. By beginning to understand both the seasonal and biophysical interactions taking place, we may begin to understand the types of leverage points that exist for integrated atmospheric water cycle management. These findings have broader implications for disentangling environmental management and conservation and have relevance for large-scale discussions about sustainable development.
Abstract
Achievement of the United Nations Sustainable Development Goals (SDGs) is contingent on understanding the potential interactions among human and natural systems. In Kenya, the goal of conserving and expanding forest cover to achieve SDG 15 “Life on Land” may be related to other SDGs because it plays a role in regulating some aspects of Kenyan precipitation. We present a 40-yr analysis of the sources of precipitation in Kenya and the fate of the evaporation that arises from within Kenya. Using MERRA-2 climate reanalysis and the Water Accounting Model 2 layers, we examine the annual and seasonal changes in moisture sources and sinks. We find that most of Kenya’s precipitation originates as oceanic evaporation but that 10% of its precipitation originates as evaporation within Kenya. This internal recycling is concentrated in the mountainous and forested Kenyan highlands, with some locations recycling more than 15% of evaporation to Kenyan precipitation. We also find that 75% of Kenyan evaporation falls as precipitation elsewhere over land, including 10% in Kenya, 25% in the Democratic Republic of the Congo, and around 5% falling in Tanzania and Uganda. Further, we find a positive relationship between increasing rates of moisture recycling and fractional forest cover within Kenya. By beginning to understand both the seasonal and biophysical interactions taking place, we may begin to understand the types of leverage points that exist for integrated atmospheric water cycle management. These findings have broader implications for disentangling environmental management and conservation and have relevance for large-scale discussions about sustainable development.
Abstract
This paper presents a comparison of two water transfer schemes implemented in land surface models: a three-layer bulk reservoir model based on the force–restore scheme (FR) and a multilayer soil diffusion scheme (DIF) relying on explicit mass‐diffusive equations and a root profile. The performances of each model at simulating evapotranspiration (ET) over a 14-yr Mediterranean crop succession are compared when the standard pedotransfer estimates versus the in situ values of the soil parameters are used. The Interactions between Soil, Biosphere, and Atmosphere (ISBA) generic land surface model is employed. When the pedotransfer estimates of the soil parameters are used, the best performance scores are obtained with DIF. DIF provides more accurate simulations of soil evaporation and gravitational drainage. It is less sensitive to errors in the soil parameters compared to FR, which is strongly driven by the soil moisture at field capacity. When the in situ soil parameters are used, the performance of the FR simulations surpasses those of DIF. The use of the proper maximum available water content for the plant removes the bias in ET and soil moisture over the crop cycle with FR, while soil water stress is simulated too early and the transpiration is underestimated with DIF. Increasing the values of the root extinction coefficient and the proportion of homogeneous root distribution slightly improves the DIF performance scores. Spatiotemporal uncertainties in the soil parameters generate smaller uncertainties in ET simulated with DIF compared to FR, which highlights the robustness of DIF for large-scale applications.
Abstract
This paper presents a comparison of two water transfer schemes implemented in land surface models: a three-layer bulk reservoir model based on the force–restore scheme (FR) and a multilayer soil diffusion scheme (DIF) relying on explicit mass‐diffusive equations and a root profile. The performances of each model at simulating evapotranspiration (ET) over a 14-yr Mediterranean crop succession are compared when the standard pedotransfer estimates versus the in situ values of the soil parameters are used. The Interactions between Soil, Biosphere, and Atmosphere (ISBA) generic land surface model is employed. When the pedotransfer estimates of the soil parameters are used, the best performance scores are obtained with DIF. DIF provides more accurate simulations of soil evaporation and gravitational drainage. It is less sensitive to errors in the soil parameters compared to FR, which is strongly driven by the soil moisture at field capacity. When the in situ soil parameters are used, the performance of the FR simulations surpasses those of DIF. The use of the proper maximum available water content for the plant removes the bias in ET and soil moisture over the crop cycle with FR, while soil water stress is simulated too early and the transpiration is underestimated with DIF. Increasing the values of the root extinction coefficient and the proportion of homogeneous root distribution slightly improves the DIF performance scores. Spatiotemporal uncertainties in the soil parameters generate smaller uncertainties in ET simulated with DIF compared to FR, which highlights the robustness of DIF for large-scale applications.
Abstract
A numerical model designed to simulate the evolution of a snow layer on a road surface was forced by meteorological forecasts so as to assess its potential for use within an operational suite for road management in winter. The suite is intended for use throughout France, even in areas where no observations of surface conditions are available. It relies on short-term meteorological forecasts and long-term simulations of surface conditions using spatialized meteorological data to provide the initial conditions. The prediction of road surface conditions (road surface temperature and presence of snow on the road) was tested at an experimental site using data from a comprehensive experimental field campaign. The results were satisfactory, with detection of the majority of snow and negative road surface temperature events. The model was then extended to all of France with an 8-km grid resolution, using forcing data from a real-time meteorological analysis system. Many events with snow on the roads were simulated for the 2004/05 winter. Results for road surface temperature were checked against road station data from several highways, and results for the presence of snow on the road were checked against measurements from the Météo-France weather station network.
Abstract
A numerical model designed to simulate the evolution of a snow layer on a road surface was forced by meteorological forecasts so as to assess its potential for use within an operational suite for road management in winter. The suite is intended for use throughout France, even in areas where no observations of surface conditions are available. It relies on short-term meteorological forecasts and long-term simulations of surface conditions using spatialized meteorological data to provide the initial conditions. The prediction of road surface conditions (road surface temperature and presence of snow on the road) was tested at an experimental site using data from a comprehensive experimental field campaign. The results were satisfactory, with detection of the majority of snow and negative road surface temperature events. The model was then extended to all of France with an 8-km grid resolution, using forcing data from a real-time meteorological analysis system. Many events with snow on the roads were simulated for the 2004/05 winter. Results for road surface temperature were checked against road station data from several highways, and results for the presence of snow on the road were checked against measurements from the Météo-France weather station network.
Abstract
Information related to land surface is immensely important to global change science. For example, land surface changes can alter regional climate through its effects on fluxes of water, energy, and carbon. In the past decades, data sources and methodologies for characterizing land surface heterogeneity (e.g., land cover, leaf area index, fractional vegetation cover, bare soil, and vegetation albedos) from remote sensing have evolved rapidly. The double ECOCLIMAP database—constituted of a land cover map and land surface variables and derived from Advanced Very High Resolution Radiometer (AVHRR) observations acquired between April 1992 and March 1993—was developed to support investigations that require information related to spatiotemporal dynamics of land surface. Here is the description of ECOCLIMAP-II: a new characterization of the land surface heterogeneity based on the latest generation of sensors, which represents an update of the ECOCLIMAP-I database over Africa. Owing to the many features of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors (more accurate in spatial resolution and spectral information compared to the AVHRR sensor), a variety of methods have been developed for an extended period of 8 yr (2000–07) to strengthen consistency between land surface variables as required by the meteorological and ecological communities. The relative accuracy (or performance) quality of ECOCLIMAP-II was assessed (i.e., by comparison with other global datasets). Results illustrate a substantial refinement; for instance, the fractional vegetation cover resulting in a root-mean-square error of 34% instead of 64% in comparison with the original version of ECOCLIMAP.
Abstract
Information related to land surface is immensely important to global change science. For example, land surface changes can alter regional climate through its effects on fluxes of water, energy, and carbon. In the past decades, data sources and methodologies for characterizing land surface heterogeneity (e.g., land cover, leaf area index, fractional vegetation cover, bare soil, and vegetation albedos) from remote sensing have evolved rapidly. The double ECOCLIMAP database—constituted of a land cover map and land surface variables and derived from Advanced Very High Resolution Radiometer (AVHRR) observations acquired between April 1992 and March 1993—was developed to support investigations that require information related to spatiotemporal dynamics of land surface. Here is the description of ECOCLIMAP-II: a new characterization of the land surface heterogeneity based on the latest generation of sensors, which represents an update of the ECOCLIMAP-I database over Africa. Owing to the many features of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors (more accurate in spatial resolution and spectral information compared to the AVHRR sensor), a variety of methods have been developed for an extended period of 8 yr (2000–07) to strengthen consistency between land surface variables as required by the meteorological and ecological communities. The relative accuracy (or performance) quality of ECOCLIMAP-II was assessed (i.e., by comparison with other global datasets). Results illustrate a substantial refinement; for instance, the fractional vegetation cover resulting in a root-mean-square error of 34% instead of 64% in comparison with the original version of ECOCLIMAP.
Abstract
The Surface Water and Ocean Topography (SWOT) mission will provide free water surface elevations, slopes, and river widths for rivers wider than 50 m. Models must be prepared to use this new finescale information by explicitly simulating the link between runoff and the river channel hydraulics. This study assesses one regional hydrometeorological model’s ability to simulate river depths. The Garonne catchment in southwestern France (56 000 km2) has been chosen for the availability of operational gauges in the river network and finescale hydraulic models over two reaches of the river. Several routing schemes, ranging from the simple Muskingum method to time-variable parameter kinematic and diffusive waves schemes, are tested. The results show that the variable flow velocity schemes are advantageous for discharge computations when compared to the original Muskingum routing method. Additionally, comparisons between river depth computations and in situ observations in the downstream Garonne River led to root-mean-square errors of 50–60 cm in the improved Muskingum method and 40–50 cm in the kinematic–diffusive wave method. The results also highlight SWOT’s potential to improve the characterization of hydrological processes for subbasins larger than 10 000 km2, the importance of an accurate digital elevation model, and the need for spatially varying hydraulic parameters.
Abstract
The Surface Water and Ocean Topography (SWOT) mission will provide free water surface elevations, slopes, and river widths for rivers wider than 50 m. Models must be prepared to use this new finescale information by explicitly simulating the link between runoff and the river channel hydraulics. This study assesses one regional hydrometeorological model’s ability to simulate river depths. The Garonne catchment in southwestern France (56 000 km2) has been chosen for the availability of operational gauges in the river network and finescale hydraulic models over two reaches of the river. Several routing schemes, ranging from the simple Muskingum method to time-variable parameter kinematic and diffusive waves schemes, are tested. The results show that the variable flow velocity schemes are advantageous for discharge computations when compared to the original Muskingum routing method. Additionally, comparisons between river depth computations and in situ observations in the downstream Garonne River led to root-mean-square errors of 50–60 cm in the improved Muskingum method and 40–50 cm in the kinematic–diffusive wave method. The results also highlight SWOT’s potential to improve the characterization of hydrological processes for subbasins larger than 10 000 km2, the importance of an accurate digital elevation model, and the need for spatially varying hydraulic parameters.
Abstract
The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) was designed to be a land surface model (LSM) benchmarking intercomparison. Unlike the traditional methods of LSM evaluation or comparison, benchmarking uses a fundamentally different approach in that it sets expectations of performance in a range of metrics a priori—before model simulations are performed. This can lead to very different conclusions about LSM performance. For this study, both simple physically based models and empirical relationships were used as the benchmarks. Simulations were performed with 13 LSMs using atmospheric forcing for 20 sites, and then model performance relative to these benchmarks was examined. Results show that even for commonly used statistical metrics, the LSMs’ performance varies considerably when compared to the different benchmarks. All models outperform the simple physically based benchmarks, but for sensible heat flux the LSMs are themselves outperformed by an out-of-sample linear regression against downward shortwave radiation. While moisture information is clearly central to latent heat flux prediction, the LSMs are still outperformed by a three-variable nonlinear regression that uses instantaneous atmospheric humidity and temperature in addition to downward shortwave radiation. These results highlight the limitations of the prevailing paradigm of LSM evaluation that simply compares an LSM to observations and to other LSMs without a mechanism to objectively quantify the expectations of performance. The authors conclude that their results challenge the conceptual view of energy partitioning at the land surface.
Abstract
The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) was designed to be a land surface model (LSM) benchmarking intercomparison. Unlike the traditional methods of LSM evaluation or comparison, benchmarking uses a fundamentally different approach in that it sets expectations of performance in a range of metrics a priori—before model simulations are performed. This can lead to very different conclusions about LSM performance. For this study, both simple physically based models and empirical relationships were used as the benchmarks. Simulations were performed with 13 LSMs using atmospheric forcing for 20 sites, and then model performance relative to these benchmarks was examined. Results show that even for commonly used statistical metrics, the LSMs’ performance varies considerably when compared to the different benchmarks. All models outperform the simple physically based benchmarks, but for sensible heat flux the LSMs are themselves outperformed by an out-of-sample linear regression against downward shortwave radiation. While moisture information is clearly central to latent heat flux prediction, the LSMs are still outperformed by a three-variable nonlinear regression that uses instantaneous atmospheric humidity and temperature in addition to downward shortwave radiation. These results highlight the limitations of the prevailing paradigm of LSM evaluation that simply compares an LSM to observations and to other LSMs without a mechanism to objectively quantify the expectations of performance. The authors conclude that their results challenge the conceptual view of energy partitioning at the land surface.