Search Results

You are looking at 1 - 10 of 42 items for

  • Author or Editor: A. C. L. Lee x
  • Refine by Access: All Content x
Clear All Modify Search
A. C. L. Lee

Abstract

Atlas and Ulbrich showed a close theoretical relation between gage-measured rain rate and 1 cm microwave absorption; and other remote techniques for potentially accurate rain estimation have been developed. More recently, Ulbrich cast doubt on the absorption relation, suggesting an important influence by vertical air velocity. This paper uses a mass-continuity argument to show that over flat terrain vertical air velocity has no influence on the relation between gage-measured rain rate and rain rate remotely sensed aloft, although it introduces a discrepancy between the area of the rain sensed aloft and the area of surface rainfall. Thus point rainfall may be correctly estimated, but areal rainfall will be erroneous where rain falls systematically in significant convective updrafts or downdrafts.

This conclusion affects all remote techniques for rain estimation, whether ground or satellite based, although techniques incorporating continuous raingage calibration may be excepted. Evidence of agreement with gage measurements cannot be taken as evidence that any technique will estimate rainfall correctly, unless (averaged) vertical air velocity effects can be accounted for.

Full access
A. C. L. Lee

Abstract

The importance of an “alias-free imaging” approach to multidimensional “sounder” instrumentation is highlighted, together with its potential for improving noise-equivalent differential temperature and spatial resolution over current designs. Small design changes may improve postdetection signal-normalized noise spectral density by several decibels, simplify mechanical design, and facilitate composite use of instruments or channels with differing sampling and resolution.

In the quest for more fundamental improvements, progress in sounder instruments has bypassed this approach; traditionally accepting scene alias, while suppressing differential-channel alias by matching and aligning channels. Newer instruments have introduced variation in alignment and channel resolution, and although relative footprint spacing has been reduced, images are insufficiently sampled to remove alias effects under difficult conditions. This study shows how alias can be eliminated without incurring unrealistic communications bandwidth and demonstrates the potentially severe penalties of failing to control alias for several model configurations similar to real instrument designs.

If scientific users who specify sounder instruments adopt this approach to achieving their objectives, engineers would have the freedom to develop better and more cost-effective microwave, and especially infrared, instruments.

Full access
J. L. Schols
,
J. A. Weinman
,
G. D. Alexander
,
R. E. Stewart
,
L. J. Angus
, and
A. C. L. Lee

Abstract

Microwave brightness temperatures emanating from a North Atlantic cyclone were measured by the Special Sensor Microwave/Imager (SSM/I) on the Defense Meteorological Satellite Program satellite. As other investigators have found before, low 85.5-GHz brightness temperatures (215 ± 20 K) were observed from cumulonimbus clouds along the squall line; however, 85.5-GHz microwave brightness temperatures observed from the nimbostratus clouds north of the low center were significantly higher (255 ± 20 K). In situ measurements from aircraft during the Canadian Atlantic Storm Program II showed that heavy snowfall consisting of large tenuous aggregates existed in the nimbostratus clouds at the time of the SSM/I overpass.

Distributions of snow, rain, liquid cloud water, and cloud ice mass were computed from a modified version of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model. That model employed a mixed-phase ice microphysics (MPIM) scheme that only considered one type of frozen hydrometeor. The frozen hydrometeor size distributions, density, and mass flux were modified to match the in situ observations where they were available and to account for the SSM/I observations using radiative transfer theory. Those revised hydrometeor representations were constrained to preserve the vertical hydrometeor mass flux distributions obtained from the MPIM scheme throughout the analysis.

Frozen dense accreted particles were required near the squall line to account for the microwave scattering effect. Snow aggregates, with density that decreased with increasing size, were needed to reproduce the high brightness temperatures observed from the nimbostratus clouds.

Full access
A. Anutaliya
,
U. Send
,
J. L. McClean
,
J. Sprintall
,
M. Lankhorst
,
C. M. Lee
,
L. Rainville
,
W. N. C. Priyadarshani
, and
S. U. P. Jinadasa

Abstract

Boundary currents along the Sri Lankan eastern and southern coasts serve as a pathway for salt exchange between the Bay of Bengal and the Arabian Sea basins in the northern Indian Ocean, which are characterized by their contrasting salinities. Measurements from two pairs of pressure-sensing inverted echo sounders (PIES) deployed along the Sri Lankan eastern and southern coasts as well as satellite measurements are used to understand the variability of these boundary currents and the associated salt transport. The volume transport in the surface (0–200-m depth) layer exhibits a seasonal cycle associated with the monsoonal wind reversal and interannual variability associated with the Indian Ocean dipole (IOD). In this layer, the boundary currents transport low-salinity water out of the Bay of Bengal during the northeast monsoon and transport high-salinity water into the Bay of Bengal during the fall monsoon transition of some years (e.g., 2015 and 2018). The Bay of Bengal salt input increases during the 2016 negative IOD as the eastward flow of high-salinity water during the fall monsoon transition intensifies, whereas the effect of the 2015/16 El Niño on the Bay of Bengal salt input is still unclear. The time-mean eddy salt flux over the upper 200 m estimated for the April 2015–March 2019 period along the eastern coast accounts for 9% of the salt budget required to balance an estimated 0.13 Sv (1 Sv ≡ 106 m3 s−1) of annual freshwater input into the Bay of Bengal. The time-mean eddy salt flux over the upper 200 m estimated for the December 2015–November 2019 period along the southern coast accounts for 27% of that same salt budget.

Significance Statement

In the northern Indian Ocean, the highly saline Arabian Sea undergoes extreme evaporation while the Bay of Bengal (BoB) receives excess freshwater input. The focus of this study is the role of the observed time-variable circulation around Sri Lanka that permits the exchange between these basins to maintain their salinity distributions. The circulation fluctuates seasonally following the monsoon wind reversal and interannually in response to large-scale climate modes. The BoB freshwater export around Sri Lanka occurs during the northeast monsoon, whereas saline water import occurs during the fall monsoon transition of some years. However, rapid changes in both water volume transport and salt exchange can occur. The circulation over 0–200-m depth transports ∼9%–27% of the BoB salt budget.

Free access
S. T. Massie
,
P. L. Bailey
,
J. C. Gille
,
E. C. Lee
,
J. L. Mergenthaler
,
A. E. Roche
,
J. B. Kumer
,
E. F. Fishbein
,
J. W. Waters
, and
W. A. Lahoz

Abstract

Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm−1 (10.8, 8.0, and 6.2 μm) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

Full access
E. Kunze
,
J. M. Klymak
,
R.-C. Lien
,
R. Ferrari
,
C. M. Lee
,
M. A. Sundermeyer
, and
L. Goodman

Abstract

Submesoscale stirring contributes to the cascade of tracer variance from large to small scales. Multiple nested surveys in the summer Sargasso Sea with tow-yo and autonomous platforms captured submesoscale water-mass variability in the seasonal pycnocline at 20–60-m depths. To filter out internal waves that dominate dynamic signals on these scales, spectra for salinity anomalies on isopycnals were formed. Salinity-gradient spectra are approximately flat with slopes of −0.2 ± 0.2 over horizontal wavelengths of 0.03–10 km. While the two to three realizations presented here might be biased, more representative measurements in the literature are consistent with a nearly flat submesoscale passive tracer gradient spectrum for horizontal wavelengths in excess of 1 km. A review of mechanisms that could be responsible for a flat passive tracer gradient spectrum rules out (i) quasigeostrophic eddy stirring, (ii) atmospheric forcing through a relict submesoscale winter mixed layer structure or nocturnal mixed layer deepening, (iii) a downscale vortical-mode cascade, and (iv) horizontal diffusion because of shear dispersion of diapycnal mixing. Internal-wave horizontal strain appears to be able to explain horizontal wavenumbers of 0.1–7 cycles per kilometer (cpkm) but not the highest resolved wavenumbers (7–30 cpkm). Submesoscale subduction cannot be ruled out at these depths, though previous observations observe a flat spectrum well below subduction depths, so this seems unlikely. Primitive equation numerical modeling suggests that nonquasigeostrophic subinertial horizontal stirring can produce a flat spectrum. The last need not be limited to mode-one interior or surface Rossby wavenumbers of quasigeostrophic theory but may have a broaderband spectrum extending to smaller horizontal scales associated with frontogenesis and frontal instabilities as well as internal waves.

Full access
G. David Alexander
,
James A. Weinman
,
V. Mohan Karyampudi
,
William S. Olson
, and
A. C. L. Lee

Abstract

Inadequate specification of divergence and moisture in the initial conditions of numerical models results in the well-documented “spinup” problem. Observational studies indicate that latent heat release can be a key ingredient in the intensification of extratropical cyclones. As a result, the assimilation of rain rates during the early stages of a numerical simulation results in improved forecasts of the intensity and precipitation patterns associated with extratropical cyclones. It is challenging, however, particularly over data-sparse regions, to obtain complete and reliable estimates of instantaneous rain rate. Here, a technique is described in which data from a variety of sources—passive microwave sensors, infrared sensors, and lightning flash observations—along with a classic image processing technique (digital image morphing) are combined to yield a continuous time series of rain rates, which may then be assimilated into a mesoscale model. The technique is tested on simulations of the notorious 1993 Superstorm. In this case, a fortuitous confluence of several factors—rapid cyclogenesis over an oceanic region, the occurrence of this cyclogenesis at a time inconveniently placed in between Special Sensor Microwave/Imager overpasses, intense lightning during this time, and a poor forecast in the control simulation—leads to a dramatic improvement in forecasts of precipitation patterns, sea level pressure fields, and geopotential height fields when information from all of the sources is combined to determine the rain rates. Lightning data, in particular, has a greater positive impact on the forecasts than the other data sources.

Full access
A. D. Collard
,
S. A. Ackerman
,
W. L. Smith
,
X. Ma
,
H. E. Revercomb
,
R. O. Knuteson
, and
S-C. Lee

Abstract

During FIRE II, cirrus clouds were observed in the wavelength range 3–19, µm with two High Resolution Interferometer Sounders as described in the Part I companion paper. One, known as AC-HIS, was mounted on the NASA ER-2 aircraft in order to look down on the clouds; these results are described in the Part II companion paper. The other, GB-HIS, also known as the Atmospheric Emitted Radiance Interferometer (AERI), was ground based. The AERI observations have been simulated, assuming scattering from spherical ice particles, using a single-layer doubling model for the cloud, for two atmospheric windows at 700–1250 and 2650–3000 cm−1. The second of these windows is affected by scattered sunlight, which has been included in the calculations. The sensitivity of the cloud signal to quantities such as the ice water path (IWP) and effective radius (r eff) have been determined. Using the cloud model, best fits have been derived for IWP and r eff, for both windows individually and together. Possible errors in these derivations have been investigated.

Full access
H. K. Ha
,
A. K. Wåhlin
,
T. W. Kim
,
S. H. Lee
,
J. H. Lee
,
H. J. Lee
,
C. S. Hong
,
L. Arneborg
,
G. Björk
, and
O. Kalén

Abstract

The circulation pathways and subsurface cooling and freshening of warm deep water on the central Amundsen Sea shelf are deduced from hydrographic transects and four subsurface moorings. The Amundsen Sea continental shelf is intersected by the Dotson trough (DT), leading from the outer shelf to the deep basins on the inner shelf. During the measurement period, warm deep water was observed to flow southward on the eastern side of DT in approximate geostrophic balance. A northward outflow from the shelf was also observed along the bottom in the western side of DT. Estimates of the flow rate suggest that up to one-third of the inflowing warm deep water leaves the shelf area below the thermocline in this deep outflow. The deep current was 1.2°C colder and 0.3 psu fresher than the inflow, but still warm, salty, and dense compared to the overlying water mass. The temperature and salinity properties suggest that the cooling and freshening process is induced by subsurface melting of glacial ice, possibly from basal melting of Dotson and Getz ice shelves. New heat budgets are presented, with a southward oceanic heat transport of 3.3 TW on the eastern side of the DT, a northward oceanic heat transport of 0.5–1.6 TW on the western side, and an ocean-to-glacier heat flux of 0.9–2.53 TW, equivalent to melting glacial ice at the rate of 83–237 km3 yr−1. Recent satellite-based estimates of basal melt rates for the glaciers suggest comparable values for the Getz and Dotson ice shelves.

Full access
Jared A. Lee
,
L. Joel Peltier
,
Sue Ellen Haupt
,
John C. Wyngaard
,
David R. Stauffer
, and
Aijun Deng

Abstract

The relationships between atmospheric transport and dispersion (AT&D) plume uncertainty and uncertainties in the transporting wind fields are investigated using the Second-Order Closure, Integrated Puff (SCIPUFF) AT&D model driven by numerical weather prediction (NWP) meteorological fields. Modeled contaminant concentrations for episode 1 of the 1983 Cross-Appalachian Tracer Experiment (CAPTEX-83) are compared with recorded ground-level concentrations of the inert tracer gas C7F14. This study evaluates a Taylor-diffusion-based parameterization of dispersion uncertainty for SCIPUFF that uses Eulerian meteorological ensemble velocity statistics and a Lagrangian integral time scale as input. These values are diagnosed from NWP ensemble data. Individual simulations of the tracer release fail to reproduce some of the monitored surface concentrations of the tracer. The plumes that are predicted using the uncertainty model in SCIPUFF are broader, improving the overlap between the predicted and observed results. Augmenting the meteorological input to SCIPUFF with meteorological ensemble-uncertainty parameters therefore provides both a better estimate of the expected plume location and the relative uncertainties in the predicted concentrations than single deterministic forecasts. These results suggest that this new parameterization of NWP wind field uncertainty for dispersion may provide more sophisticated information that may benefit emergency response and decision making.

Full access