Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: A. C. Poje x
- Refine by Access: All Content x
Abstract
New dynamical systems techniques are used to analyze fluid particle paths in an eddy resolving, barotropic ocean model of the Gulf Stream. Specifically, the existence of finite-time invariant manifolds associated with transient, mesoscale events such as ring detachment and merger is proved based on computer-assisted analytic results. These “Lagrangian” invariant manifolds completely organize the dynamics and mark the pathways by which fluid parcels may be exchanged across stream. In this way, the Lagrangian flow geometry of a detaching ring or a ring–jet interaction event, as well as the exact associated particle flux, is obtained.
The detaching ring geometry indicates that a significant amount of the fluid entrained by the ring originates in a long thin region on the far side of the jet and that this region extends as far upstream as the western boundary current. In the ring–stream interaction case, particle transport occurs both to and from the ring and is concentrated in thin regions on the near side of the jet and around the perimeter of the ring.
Abstract
New dynamical systems techniques are used to analyze fluid particle paths in an eddy resolving, barotropic ocean model of the Gulf Stream. Specifically, the existence of finite-time invariant manifolds associated with transient, mesoscale events such as ring detachment and merger is proved based on computer-assisted analytic results. These “Lagrangian” invariant manifolds completely organize the dynamics and mark the pathways by which fluid parcels may be exchanged across stream. In this way, the Lagrangian flow geometry of a detaching ring or a ring–jet interaction event, as well as the exact associated particle flux, is obtained.
The detaching ring geometry indicates that a significant amount of the fluid entrained by the ring originates in a long thin region on the far side of the jet and that this region extends as far upstream as the western boundary current. In the ring–stream interaction case, particle transport occurs both to and from the ring and is concentrated in thin regions on the near side of the jet and around the perimeter of the ring.
Abstract
A basin-scale, reduced-gravity model is used to study how drifter launch strategies affect the accuracy of Eulerian velocity fields reconstructed from limited Lagrangian data. Optimal dispersion launch sites are found by tracking strongly hyperbolic singular points in the flow field. Lagrangian data from drifters launched from such locations are found to provide significant improvement in the reconstruction accuracy over similar but randomly located initial deployments. The eigenvalues of the hyperbolic singular points in the flow field determine the intensity of the local particle dispersion and thereby provide a natural timescale for initializing subsequent launches. Aligning the initial drifter launch in each site along an outflowing manifold ensures both high initial particle dispersion and the eventual sampling of regions of high kinetic energy, two factors that substantially affect the accuracy of the Eulerian reconstruction. Reconstruction error is reduced by a factor of ∼2.5 by using a continual launch strategy based on both the local stretching rates and the outflowing directions of two strong saddles located in the dynamically active region south of the central jet. Notably, a majority of those randomly chosen launch sites that produced the most accurate reconstructions also sampled the local manifold structure.
Abstract
A basin-scale, reduced-gravity model is used to study how drifter launch strategies affect the accuracy of Eulerian velocity fields reconstructed from limited Lagrangian data. Optimal dispersion launch sites are found by tracking strongly hyperbolic singular points in the flow field. Lagrangian data from drifters launched from such locations are found to provide significant improvement in the reconstruction accuracy over similar but randomly located initial deployments. The eigenvalues of the hyperbolic singular points in the flow field determine the intensity of the local particle dispersion and thereby provide a natural timescale for initializing subsequent launches. Aligning the initial drifter launch in each site along an outflowing manifold ensures both high initial particle dispersion and the eventual sampling of regions of high kinetic energy, two factors that substantially affect the accuracy of the Eulerian reconstruction. Reconstruction error is reduced by a factor of ∼2.5 by using a continual launch strategy based on both the local stretching rates and the outflowing directions of two strong saddles located in the dynamically active region south of the central jet. Notably, a majority of those randomly chosen launch sites that produced the most accurate reconstructions also sampled the local manifold structure.
Abstract
A single-layer, reduced-gravity, double-gyre primitive equation model in a 2000 km × 2000 km square domain is used to test the accuracy and sensitivity of time-dependent Eulerian velocity fields reconstructed from numerically generated drifter trajectories and climatology. The goal is to determine how much Lagrangian data is needed to capture the Eulerian velocity field within a specified accuracy. The Eulerian fields are found by projecting, on an analytic set of divergence-free basis functions, drifter data launched in the active western half of the basin supplemented by climatology in the eastern domain. The time-dependent coefficients are evaluated by least squares minimization and the reconstructed fields are compared to the original model output. The authors find that the accuracy of the reconstructed fields depends critically on the spatial coverage of the drifter observations. With good spatial coverage, the technique allows accurate Eulerian reconstructions with under 200 drifters deployed in the 1000 km × 1400 km energetic western region. The base reconstruction error, achieved with full observation of the velocity field, ranges from 5% (with 191 basis functions) to 30% (with 65 basis functions). Specific analysis of the relation between spatial coverage and reconstruction error is presented using 180 drifters deployed in 100 different initial configurations that maximize coverage extremes. The simulated drifter data is projected on 107 basis functions for a 50-day period. The base reconstruction error of 15% is achieved when drifters occupy approximately 110 (out of 285) 70-km cells in the western region. Reconstructions from simulated mooring data located at the initial positions of representative good and poor coverage drifter deployments show the effect drifter dispersion has on data voids. The authors conclude that with appropriate coverage, drifter data could provide accurate basin-scale reconstruction of Eulerian velocity fields.
Abstract
A single-layer, reduced-gravity, double-gyre primitive equation model in a 2000 km × 2000 km square domain is used to test the accuracy and sensitivity of time-dependent Eulerian velocity fields reconstructed from numerically generated drifter trajectories and climatology. The goal is to determine how much Lagrangian data is needed to capture the Eulerian velocity field within a specified accuracy. The Eulerian fields are found by projecting, on an analytic set of divergence-free basis functions, drifter data launched in the active western half of the basin supplemented by climatology in the eastern domain. The time-dependent coefficients are evaluated by least squares minimization and the reconstructed fields are compared to the original model output. The authors find that the accuracy of the reconstructed fields depends critically on the spatial coverage of the drifter observations. With good spatial coverage, the technique allows accurate Eulerian reconstructions with under 200 drifters deployed in the 1000 km × 1400 km energetic western region. The base reconstruction error, achieved with full observation of the velocity field, ranges from 5% (with 191 basis functions) to 30% (with 65 basis functions). Specific analysis of the relation between spatial coverage and reconstruction error is presented using 180 drifters deployed in 100 different initial configurations that maximize coverage extremes. The simulated drifter data is projected on 107 basis functions for a 50-day period. The base reconstruction error of 15% is achieved when drifters occupy approximately 110 (out of 285) 70-km cells in the western region. Reconstructions from simulated mooring data located at the initial positions of representative good and poor coverage drifter deployments show the effect drifter dispersion has on data voids. The authors conclude that with appropriate coverage, drifter data could provide accurate basin-scale reconstruction of Eulerian velocity fields.
Abstract
The Lagrangian Submesoscale Experiment (LASER) was designed to study surface flows during winter conditions in the northern Gulf of Mexico. More than 1000 mostly biodegradable drifters were launched. The drifters consisted of a surface floater extending 5 cm below the surface, containing the satellite tracking system, and a drogue extending 60 cm below the surface, hanging beneath the floater on a flexible tether. On some floats, the drogue separated from the floater during storms. This paper describes methods to detect drogue loss based on two properties that distinguish drogued from undrogued drifters. First, undrogued drifters often flip over, pointing their satellite antenna downward and thus intermittently reducing the frequency of GPS fixes. Second, undrogued drifters respond to wind forcing more than drogued drifters. A multistage analysis is used: first, two properties are used to create a preliminary drifter classification; then, the motion of each unclassified drifter is compared to that of its classified neighbors in an iterative process for nearly all of the drifters. The algorithm classified drifters with a known drogue status with an accuracy of virtually 100%. Drogue loss times were estimated with a precision of less than 0.5 and 3 h for 60% and 85% of the drifters, respectively. An estimated 40% of the drifters lost their drogues in the first 7 weeks, with drogue loss coinciding with storm events, particularly those with steep waves. Once the drogued and undrogued drifters are classified, they can be used to quantify the differences in material dispersion at different depths.
Abstract
The Lagrangian Submesoscale Experiment (LASER) was designed to study surface flows during winter conditions in the northern Gulf of Mexico. More than 1000 mostly biodegradable drifters were launched. The drifters consisted of a surface floater extending 5 cm below the surface, containing the satellite tracking system, and a drogue extending 60 cm below the surface, hanging beneath the floater on a flexible tether. On some floats, the drogue separated from the floater during storms. This paper describes methods to detect drogue loss based on two properties that distinguish drogued from undrogued drifters. First, undrogued drifters often flip over, pointing their satellite antenna downward and thus intermittently reducing the frequency of GPS fixes. Second, undrogued drifters respond to wind forcing more than drogued drifters. A multistage analysis is used: first, two properties are used to create a preliminary drifter classification; then, the motion of each unclassified drifter is compared to that of its classified neighbors in an iterative process for nearly all of the drifters. The algorithm classified drifters with a known drogue status with an accuracy of virtually 100%. Drogue loss times were estimated with a precision of less than 0.5 and 3 h for 60% and 85% of the drifters, respectively. An estimated 40% of the drifters lost their drogues in the first 7 weeks, with drogue loss coinciding with storm events, particularly those with steep waves. Once the drogued and undrogued drifters are classified, they can be used to quantify the differences in material dispersion at different depths.
Abstract
We present an analysis of ocean surface dispersion characteristics, on 1–100-m scales, obtained by optically tracking a release of
Abstract
We present an analysis of ocean surface dispersion characteristics, on 1–100-m scales, obtained by optically tracking a release of