Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: A. Diongue x
  • Refine by Access: All Content x
Clear All Modify Search

The JET2000 Project: Aircraft Observations of the African Easterly Jet and African Easterly Waves

Aircraft Observations of the African Easterly Jet and African Easterly Waves

C. D. Thorncroft, D. J. Parker, R. R. Burton, M. Diop, J. H. Ayers, H. Barjat, S. Devereau, A. Diongue, R. Dumelow, D. R. Kindred, N. M. Price, M. Saloum, C. M. Tayor, and A. M. Tompkins

Scientific background and motivation for the JET2000 aircraft observing campaign that took place in West Africa during the last week of August 2000 are presented. The Met Research Flight CI30 aircraft made two flights along the African easterly jet (AEJ) between Sal, Cape Verde, and Niamey, Niger, and two “box” flights that twice crossed the AEJ at longitudes near Niamey. Dropsondes were released at approximately 0.5°–10° intervals. The two box flights also included low-level flights that sampled north–south variations in boundary layer properties in the baroclinic zone beneath the AEJ.

Preliminary results and analysis of the JET2000 period including some of the aircraft data are presented. The JET2000 campaign occurred during a relatively dry period in the Niamey region and, perhaps consistent with this, was also associated with less coherent easterly wave activity compared to other periods in the season. Meridional cross sections of the AEJ on 28 and 29 August (after the passage of a mesoscale system) are presented and discussed. Analysis of dropsonde data on 28 August indicates contrasting convective characteristics north and south of the AEJ with dry convection more dominant to the north and moist convection more dominant to the south. The consequences of this for the AEJ and the relationship with the boundary layer observations are briefly discussed.

Preliminary NWP results indicate little sensitivity to the inclusion of the dropsonde data on the AEJ winds in European Centre for Medium-Range Weather Forecasts (ECMWF) and Met Office analyses. It is proposed that this may be due to a good surface analysis and a realistic model response to this. Both models poorly predict the AEJ in the 5-day forecast indicating the need for more process studies in the region.

Full access
D. B. Parsons, M. Beland, D. Burridge, P. Bougeault, G. Brunet, J. Caughey, S. M. Cavallo, M. Charron, H. C. Davies, A. Diongue Niang, V. Ducrocq, P. Gauthier, T. M. Hamill, P. A. Harr, S. C. Jones, R. H. Langland, S. J. Majumdar, B. N. Mills, M. Moncrieff, T. Nakazawa, T. Paccagnella, F. Rabier, J.-L. Redelsperger, C. Riedel, R. W. Saunders, M. A. Shapiro, R. Swinbank, I. Szunyogh, C. Thorncroft, A. J. Thorpe, X. Wang, D. Waliser, H. Wernli, and Z. Toth


The Observing System Research and Predictability Experiment (THORPEX) was a 10-yr, international research program organized by the World Meteorological Organization’s World Weather Research Program. THORPEX was motivated by the need to accelerate the rate of improvement in the accuracy of 1-day to 2-week forecasts of high-impact weather for the benefit of society, the economy, and the environment. THORPEX, which took place from 2005 to 2014, was the first major international program focusing on the advancement of global numerical weather prediction systems since the Global Atmospheric Research Program, which took place almost 40 years earlier, from 1967 through 1982. The scientific achievements of THORPEX were accomplished through bringing together scientists from operational centers, research laboratories, and the academic community to collaborate on research that would ultimately advance operational predictive skill. THORPEX included an unprecedented effort to make operational products readily accessible to the broader academic research community, with community efforts focused on problems where challenging science intersected with the potential to accelerate improvements in predictive skill. THORPEX also collaborated with other major programs to identify research areas of mutual interest, such as topics at the intersection of weather and climate. THORPEX research has 1) increased our knowledge of the global-to-regional influences on the initiation, evolution, and predictability of high-impact weather; 2) provided insight into how predictive skill depends on observing strategies and observing systems; 3) improved data assimilation and ensemble forecast systems; 4) advanced knowledge of high-impact weather associated with tropical and polar circulations and their interactions with midlatitude flows; and 5) expanded society’s use of weather information through applied and social science research.

Full access