Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: A. E. Strong x
  • All content x
Clear All Modify Search
A. E. Strong

Abstract

No abstract available.

Full access
A. E. Strong and J. A. Pritchard

Comparisons of satellite-derived monthly mean sea surface temperature anomalies with National Marine Fisheries Service (NMFS) ship-derived monthly mean sea surface temperature anomalies over the North Pacific Ocean reveal some encouraging results. Although still far from perfect, correlation coefficients for linear fits of 0.34, 0.49, 0.50, and 0.55 are observed for the winter months of November 1977, December 1977, January 1978, and February 1978, respectively. The standard error of estimate remained close to ±0.6°C and the satellite–ship temperature difference between the overall monthly mean anomaly vacillated between +0.31°C (December 1977) and −0.30°C (February 1978). Several other comparisons are presented. If the encouraging results of this study can be improved using improved sensor systems on the NOAA satellites, in addition to incorporating improved processing procedures, it would seem that we are now on the threshold of a more complete Earth monitoring system for at least one aspect of global climate—variability of sea surface temperature distributions.

Full access
P. L. Richardson, A. E. Strong, and J. A. Knauss

Abstract

A cyclonic Gulf Stream eddy was observed in the western Sargasso Sea by satellite infrared measurements and later confirmed by ship measurements. Fourteen months of observations indicate that the eddy moved southwestward at an average rate of 1 mi day−1. The evidence suggests that the eddy was absorbed by the Gulf Stream off Florida.

Full access
P. Krishna Rao, A. E. Strong, and P. Koffler

Abstract

No abstract available..

Full access
A. Wiacek, J. R. Taylor, K. Strong, R. Saari, T. E. Kerzenmacher, N. B. Jones, and D. W. T. Griffith

Abstract

The authors describe the optical design of a high-resolution Fourier Transform Spectrometer (FTS), which serves as the primary instrument at the University of Toronto Atmospheric Observatory (TAO). The FTS is dedicated to ground-based infrared solar absorption atmospheric measurements from Toronto, Ontario, Canada. Instrument performance is discussed in terms of instrumental line shape (ILS) and phase error and modulation efficiency as a function of optical path difference. Typical measurement parameters are presented together with retrieval parameters used to derive total and partial column concentrations of ozone. Retrievals at TAO employ the optimal estimation method (OEM), and some impacts of the necessary a priori constraints are examined. In March 2004, after participating in a retrieval algorithm user intercomparison exercise, the TAO FTS was granted the status of a Complementary Observation Station within the international community of high-resolution FTS users in the Network for the Detection of Atmospheric Composition and Change (NDACC). During this exercise, average differences between total columns retrieved from the same spectra by different users were below 2.1% for O3, HCl, and N2O in the blind phase, and below 1% in the open phase, when all retrieval constraints were identical. Finally, a 2.5-yr time series of monthly mean stratospheric ozone columns agrees within 3% with those retrieved from Optical Spectrograph and Infrared Imager System (OSIRIS) measurements on board the Odin satellite, which is within the errors of both measurement platforms.

Full access
C. A. McLinden, A. E. Bourassa, S. Brohede, M. Cooper, D. A. Degenstein, W. J. F. Evans, R. L. Gattinger, C. S. Haley, E. J. Llewellyn, N. D. Lloyd, P. Loewen, R. V. Martin, J. C. McConnell, I. C. McDade, D. Murtagh, L. Rieger, C. von Savigny, P. E. Sheese, C. E. Sioris, B. Solheim, and K. Strong

On 20 February 2001, a converted Russian ICBM delivered Odin, a small Swedish satellite, into low Earth orbit. One of the sensors onboard is a small Canadian spectrometer called OSIRIS. By measuring scattered sunlight from Earth's horizon, or limb, OSIRIS is able to deduce the abundance of trace gases and particles from the upper troposphere into the lower thermosphere. Designed and built on a modest budget, OSIRIS has exceeded not only its 2-yr lifetime but also all expectations. With more than a decade of continuous data, OSIRIS has recorded over 1.8 million limb scans. The complexities associated with unraveling scattered light in order to convert OSIRIS spectra into highquality geophysical profiles have forced the OSIRIS team to develop leading-edge algorithms and computer models. These profiles are being used to help address many science questions, including the coupling of atmospheric regions (e.g., stratosphere–troposphere exchange) and the budgets and trends in ozone, nitrogen, bromine, and other species. One specific example is the distribution and abundance of upper-tropospheric, lightning-produced reactive nitrogen and ozone. Arguably OSIRIS's most important contributions come from its aerosol measurements, including detection and characterization of subvisual cirrus and polar stratospheric and mesospheric clouds. OSIRIS also provides a unique view of the stratospheric aerosol layer, and it is able to identify and track perturbations from volcanic activity and biomass burning.

Full access

Energy and Water Cycles in a High-Latitude, North-Flowing River System

Summary of Results from the Mackenzie GEWEX Study—Phase I

W. R. Rouse, E. M. Blyth, R. W. Crawford, J. R. Gyakum, J. R. Janowicz, B. Kochtubajda, H. G. Leighton, P. Marsh, L. Martz, A. Pietroniro, H. Ritchie, W. M. Schertzer, E. D. Soulis, R. E. Stewart, G. S. Strong, and M. K. Woo

The MacKenzie Global Energy and Water Cycle Experiment (GEWEX) Study, Phase 1, seeks to improve understanding of energy and water cycling in the Mackenzie River basin (MRB) and to initiate and test atmospheric, hydrologic, and coupled models that will project the sensitivity of these cycles to climate change and to human activities. Major findings from the study are outlined in this paper. Absorbed solar radiation is a primary driving force of energy and water, and shows dramatic temporal and spatial variability. Cloud amounts feature large diurnal, seasonal, and interannual fluctuations. Seasonality in moisture inputs and outputs is pronounced. Winter in the northern MRB features deep thermal inversions. Snow hydrological processes are very significant in this high-latitude environment and are being successfully modeled for various landscapes. Runoff processes are distinctive in the major terrain units, which is important to overall water cycling. Lakes and wetlands compose much of MRB and are prominent as hydrologic storage systems that must be incorporated into models. Additionally, they are very efficient and variable evaporating systems that are highly sensitive to climate variability. Mountainous high-latitude sub-basins comprise a mosaic of land surfaces with distinct hydrological attributes that act as variable source areas for runoff generation. They also promote leeward cyclonic storm generation. The hard rock terrain of the Canadian Shield exhibits a distinctive energy flux regimen and hydrologic regime. The MRB has been warming dramatically recently, and ice breakup and spring outflow into the Polar Sea has been occurring progressively earlier. This paper presents initial results from coupled atmospheric-hydrologic modeling and delineates distinctive cold region inputs needed for developments in regional and global climate modeling.

Full access