Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: A. G. Cunningham x
  • All content x
Clear All Modify Search
S. G. Alderson and S. A. Cunningham

Abstract

Attitude (pitch, roll, and heading) variations of the platform on which acoustic Doppler current profilers (ADCPs) are mounted will affect the measurements of water velocity using ADCPs. The major correction required to the velocity vector is for heading. Here the authors concentrate on the magnitude of errors due to pitch and roll biases. Data used in this study were obtained using a 150-kHz RD Instruments ADCP fitted to the RRS James Clark Ross. In late November 1994 a hydrographic section was made across Drake Passage in the Southern Ocean along the World Ocean Circulation Experiment (WOCE) Special Repeat 1 section. The annual occupation of this line is a major contribution by the United Kingdom to the WOCE. A key element of the program is to determine the volume flux of the Antarctic Circumpolar Current as it flows through Drake Passage. One method of obtaining the total volume flux is by referencing relative geostrophic velocity profiles to the absolute ADCP velocity profiles, thereby obtaining estimates of the geostrophic reference velocity and hence the total geostrophic flow field; this is a technique used in several previous circulation studies. The authors find (i) use of pitch and roll corrections has no significant effect on heading misalignment and velocity amplitude calibrations; (ii) underway typical pitch and roll corrections amount to 0.005 m s−1 in the athwart ship water velocity; (iii) for this dataset, differences in the mean pitch and roll under way and on station explain half the geostrophic volume transport discrepancy obtained using underway and on-station ADCP velocities as a geostrophic reference; (iv) a pitch and roll bias of only 1° under way leads, in this dataset, to 10% errors in the estimate of the volume transport comparable to heading misalignment;and (v) hypothetically, pitch and roll variations at the same frequency and in phase can lead to much larger errors in volume transport estimates.

Full access
M. A. Sundermeyer, E. A. Terray, J. R. Ledwell, A. G. Cunningham, P. E. LaRocque, J. Banic, and W. J. Lillycrop

Abstract

Results are presented from a pilot study using a fluorescent dye tracer imaged by airborne lidar in the ocean surface layer on spatial scales of meters to kilometers and temporal scales of minutes to hours. The lidar used here employs a scanning, frequency-doubled Nd:YAG laser to emit an infrared (1064 nm) and green (532 nm) pulse 6 ns in duration at a rate of 1 kHz. The received signal is split to infrared, green, and fluorescent (nominally 580–600 nm) channels, the latter two of which are used to compute absolute dye concentration as a function of depth and horizontal position. Comparison of dye concentrations inferred from the lidar with in situ fluorometry measurements made by ship shows good agreement both qualitatively and quantitatively for absolute dye concentrations ranging from 1 to >10 ppb. Uncertainties associated with horizontal variations in the natural seawater attenuation are approximately 1 ppb. The results demonstrate the ability of airborne lidar to capture high-resolution three-dimensional “snapshots” of the distribution of the tracer as it evolves over very short time and space scales. Such measurements offer a powerful observational tool for studies of transport and mixing on these scales.

Full access
R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham

Abstract

The sole instrument on the upcoming Ice, Cloud, and Land Elevation Satellite (ICESat-2) altimetry mission is a micropulse lidar that measures the time of flight of individual photons from laser pulses transmitted at 532 nm. Prior to launch, the Multiple Altimeter Beam Experimental Lidar (MABEL) serves as an airborne implementation for testing and development. This paper provides a first examination of MABEL data acquired on two flights over sea ice in April 2012: one north of the Arctic coast of Greenland and the other in the east Greenland Sea. The phenomenology of photon distributions in the sea ice returns is investigated. An approach to locate the surface and estimate its elevation in the distributions is described, and its achievable precision is assessed. Retrieved surface elevations over relatively flat leads in the ice cover suggest that precisions of several centimeters are attainable. Restricting the width of the elevation window used in the surface analysis can mitigate potential biases in the elevation estimates due to subsurface returns at 532 nm. Comparisons of nearly coincident elevation profiles from MABEL with those acquired by an analog lidar show good agreement. Discrimination of ice and open water, a crucial step in the determination of sea ice freeboard and the estimation of ice thickness, is facilitated by contrasts in the observed signal–background photon statistics. Future flight paths will sample a broader range of seasonal ice conditions for further evaluation of the year-round profiling capabilities and limitations of the MABEL instrument.

Full access
A. Duchez, J. J.-M. Hirschi, S. A. Cunningham, A. T. Blaker, H. L. Bryden, B. de Cuevas, C. P. Atkinson, G. D. McCarthy, E. Frajka-Williams, D. Rayner, D. Smeed, and M. S. Mizielinski

Abstract

The Atlantic meridional overturning circulation (AMOC) has received considerable attention, motivated by its major role in the global climate system. Observations of AMOC strength at 26°N made by the Rapid Climate Change (RAPID) array provide the best current estimate of the state of the AMOC. The period 2004–11 when RAPID AMOC is available is too short to assess decadal variability of the AMOC. This modeling study introduces a new AMOC index (called AMOCSV) at 26°N that combines the Florida Straits transport, the Ekman transport, and the southward geostrophic Sverdrup transport. The main hypothesis in this study is that the upper midocean geostrophic transport calculated using the RAPID array is also wind-driven and can be approximated by the geostrophic Sverdrup transport at interannual and longer time scales. This index is expected to reflect variations in the AMOC at interannual to decadal time scales. This estimate of the surface branch of the AMOC can be constructed as long as reliable measurements are available for the Gulf Stream and for wind stress. To test the reliability of the AMOCSV on interannual and longer time scales, two different numerical simulations are used: a forced and a coupled simulation. Using these simulations the AMOCSV captures a substantial fraction of the AMOC variability and is in good agreement with the AMOC transport at 26°N on both interannual and decadal time scales. These results indicate that it might be possible to extend the observation-based AMOC at 26°N back to the 1980s.

Full access
M. Susan Lozier, Sheldon Bacon, Amy S. Bower, Stuart A. Cunningham, M. Femke de Jong, Laura de Steur, Brad deYoung, Jürgen Fischer, Stefan F. Gary, Blair J. W. Greenan, Patrick Heimbach, Naomi P. Holliday, Loïc Houpert, Mark E. Inall, William E. Johns, Helen L. Johnson, Johannes Karstensen, Feili Li, Xiaopei Lin, Neill Mackay, David P. Marshall, Herlé Mercier, Paul G. Myers, Robert S. Pickart, Helen R. Pillar, Fiammetta Straneo, Virginie Thierry, Robert A. Weller, Richard G. Williams, Chris Wilson, Jiayan Yang, Jian Zhao, and Jan D. Zika

Abstract

For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.

Full access