Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: A. M. Molod x
  • All content x
Clear All Modify Search
A. Molod, H. Salmun, and M. Dempsey

Abstract

An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear-sky conditions, summertime averaged hourly time series of PBL heights compare well with Richardson number–based estimates at the few NPN stations with hourly temperature measurements. Comparisons with estimates based on clear-sky reanalysis show that the wind profiler (WP) PBL heights are lower by approximately 250–500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy-sky conditions, and are generally comparable to the Richardson number–based PBL heights and higher than the reanalysis PBL heights. WP PBL heights have a smaller clear–cloudy condition difference than either of the other two. The algorithm presented here is shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

Full access
M. M. Hurwitz, P. A. Newman, L. D. Oman, and A. M. Molod

Abstract

This study is the first to identify a robust El Niño–Southern Oscillation (ENSO) signal in the Antarctic stratosphere. El Niño events between 1979 and 2009 are classified as either conventional “cold tongue” events (positive SST anomalies in the Niño-3 region) or “warm pool” events (positive SST anomalies in the Niño-4 region). The 40-yr ECMWF Re-Analysis (ERA-40), NCEP, and Modern Era Retrospective–Analysis for Research and Applications (MERRA) meteorological reanalyses are used to show that the Southern Hemisphere stratosphere responds differently to these two types of El Niño events. Consistent with previous studies, cold tongue events do not impact temperatures in the Antarctic stratosphere. During warm pool El Niño events, the poleward extension and increased strength of the South Pacific convergence zone favor an enhancement of planetary wave activity during September–November. On average, these conditions lead to higher polar stratospheric temperatures and a weakening of the Antarctic polar jet in November and December, as compared with neutral ENSO years. The phase of the quasi-biennial oscillation (QBO) modulates the stratospheric response to warm pool El Niño events; the strongest planetary wave driving events are coincident with the easterly phase of the QBO.

Full access
Laura A. Holt, M. Joan Alexander, Lawrence Coy, Andrea Molod, William Putman, and Steven Pawson

Abstract

This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-yr global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NR-QBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NR-QBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength < 1000 km account for up to half of the small-scale (<3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.

Full access
S. D. Schubert, Y. Chang, H. Wang, R. D. Koster, and A. M. Molod

Abstract

We outline a framework for identifying the geographical sources of biases in climate models. By forcing the model with time-averaged short-term analysis increments [tendency bias corrections (TBCs)] over well-defined regions, we can quantify how the associated reduced tendency errors in these regions manifest themselves both locally and remotely through large-scale teleconnections. Companion experiments in which the model is fully corrected [constrained to remain close to the analysis at each time step, termed replay (RPL)] in the various regions provide an upper bound to the local and remote TBC impacts. An example is given based on MERRA-2 and the NASA/GMAO GEOS AGCM used to generate MERRA-2. The results highlight the ability of the approach to isolate the geographical sources of some of the long-standing boreal summer biases of the GEOS model, including a stunted North Pacific summer jet, a dry bias in the U.S. Great Plains, and a warm bias over most of the Northern Hemisphere land. In particular, we show that the TBC over a region that encompasses Tibet has by far the largest impact (compared with all other regions) on the NH summer jets and related variables, leading to significant improvements in the simulation of North American temperature and, to a lesser degree, precipitation. It is further shown that the results of the regional TBC experiments are for the most part linear in the summer hemisphere, allowing a robust interpretation of the results.

Full access
Y. Chang, S. D. Schubert, R. D. Koster, A. M. Molod, and H. Wang

Abstract

We revisit the bias correction problem in current climate models, taking advantage of state-of-the-art atmospheric reanalysis data and new data assimilation tools that simplify the estimation of short-term (6 hourly) atmospheric tendency errors. The focus is on the extent to which correcting biases in atmospheric tendencies improves the model’s climatology, variability, and ultimately forecast skill at subseasonal and seasonal time scales. Results are presented for the NASA GMAO GEOS model in both uncoupled (atmosphere only) and coupled (atmosphere–ocean) modes. For the uncoupled model, the focus is on correcting a stunted North Pacific jet and a dry bias over the central United States during boreal summer—long-standing errors that are indeed common to many current AGCMs. The results show that the tendency bias correction (TBC) eliminates the jet bias and substantially increases the precipitation over the Great Plains. These changes are accompanied by much improved (increased) storm-track activity throughout the northern midlatitudes. For the coupled model, the atmospheric TBCs produce substantial improvements in the simulated mean climate and its variability, including a much reduced SST warm bias, more realistic ENSO-related SST variability and teleconnections, and much improved subtropical jets and related submonthly transient wave activity. Despite these improvements, the improvement in subseasonal and seasonal forecast skill over North America is only modest at best. The reasons for this, which are presumably relevant to any forecast system, involve the competing influences of predictability loss with time and the time it takes for climate drift to first have a significant impact on forecast skill.

Full access
Chaim I. Garfinkel, Luke D. Oman, Elizabeth A. Barnes, Darryn W. Waugh, Margaret H. Hurwitz, and Andrea M. Molod

Abstract

A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air–sea interface, in which surface roughness is increased for moderate wind speeds (4–20 m s−1), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upward wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in midwinter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry–climate models use a similar scheme for their surface-layer momentum exchange and have similar biases in the stratosphere, the authors expect that results from GEOSCCM may be relevant for other climate models.

Full access
S. Pawson, K. Kodera, K. Hamilton, T. G. Shepherd, S. R. Beagley, B. A. Boville, J. D. Farrara, T. D. A. Fairlie, A. Kitoh, W. A. Lahoz, U. Langematz, E. Manzini, D. H. Rind, A. A. Scaife, K. Shibata, P. Simon, R. Swinbank, L. Takacs, R. J. Wilson, J. A. Al-Saadi, M. Amodei, M. Chiba, L. Coy, J. de Grandpré, R. S. Eckman, M. Fiorino, W. L. Grose, H. Koide, J. N. Koshyk, D. Li, J. Lerner, J. D. Mahlman, N. A. McFarlane, C. R. Mechoso, A. Molod, A. O'Neill, R. B. Pierce, W. J. Randel, R. B. Rood, and F. Wu

To investigate the effects of the middle atmosphere on climate, the World Climate Research Programme is supporting the project “Stratospheric Processes and their Role in Climate” (SPARC). A central theme of SPARC, to examine model simulations of the coupled troposphere–middle atmosphere system, is being performed through the initiative called GRIPS (GCM-Reality Intercomparison Project for SPARC). In this paper, an overview of the objectives of GRIPS is given. Initial activities include an assessment of the performance of middle atmosphere climate models, and preliminary results from this evaluation are presented here. It is shown that although all 13 models evaluated represent most major features of the mean atmospheric state, there are deficiencies in the magnitude and location of the features, which cannot easily be traced to the formulation (resolution or the parameterizations included) of the models. Most models show a cold bias in all locations, apart from the tropical tropopause region where they can be either too warm or too cold. The strengths and locations of the major jets are often misrepresented in the models. Looking at three-dimensional fields reveals, for some models, more severe deficiencies in the magnitude and positioning of the dominant structures (such as the Aleutian high in the stratosphere), although undersampling might explain some of these differences from observations. All the models have shortcomings in their simulations of the present-day climate, which might limit the accuracy of predictions of the climate response to ozone change and other anomalous forcing.

Full access
Ronald Gelaro, Will McCarty, Max J. Suárez, Ricardo Todling, Andrea Molod, Lawrence Takacs, Cynthia A. Randles, Anton Darmenov, Michael G. Bosilovich, Rolf Reichle, Krzysztof Wargan, Lawrence Coy, Richard Cullather, Clara Draper, Santha Akella, Virginie Buchard, Austin Conaty, Arlindo M. da Silva, Wei Gu, Gi-Kong Kim, Randal Koster, Robert Lucchesi, Dagmar Merkova, Jon Eric Nielsen, Gary Partyka, Steven Pawson, William Putman, Michele Rienecker, Siegfried D. Schubert, Meta Sienkiewicz, and Bin Zhao

Abstract

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams and converged to a single near-real-time stream in mid-2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).

Full access