Search Results
You are looking at 1 - 10 of 23 items for
- Author or Editor: A. O'Neill x
- Refine by Access: All Content x
Abstract
Terms in the transformed Eulerian mean equations are computed for the stratospheric warmings of December and January, 1976–77, together with cross sections showing the directions of the Eliassen-Palm (EP) fluxes and residual mean meridional circulations. The picture of warmings that emerges from them transformed diagnostics is compared and contrasted with that presented for the same events by O'Neill and Taylor (1979), whose analysis was based on the traditional momentum and heat budgets. The transformed equations lead to a simpler interpretation of warmings mainly because one term, the convergence of the EP flux, embodies to good approximation the total effect of the waves in forcing the mean flow. Zonal mean temperature changes occur essentially as an adiabatic response to the wave-induced, residual mean meridional circulation. Some evidence that critical lines may act to absorb rather than to reflect planetary waves an a short time-scale is presented.
One aspect of these and other warmings of dynamical importance is the switching of the EP fluxes which occurs from an upward and equatorward direction to an upward and poleward direction. It is proposed that this represents a feedback effect on wave propagation of an evolving mean flow. Some support for this idea comes from an analysis of ray paths in the meridional plane. They are computed for different mean wind fields which arise during a warming, and give the direction of wave propagation according to a linear theory based on the WKB approximation. Within the approximations of the theory, the mean state determines how the planetary waves propagate meridionally and vertically through a quantity Q which may be termed a refractive index. Rays are refracted poleward or equatorward according to whether Q increases poleward or equatorward. After a minor warming when the stratospheric jet has been replaced by weak westerlies, a local minimum in Q occurs in the stratosphere and rays reaching upper levels are refracted equatorward. They are refracted poleward when a strong jet is established at high latitudes, which implies that subsequent wave disturbances are focused into the polar cap, leading there to a deceleration of the mean wind. The ray paths are compared with the directions of wave propagation as given by the observed EP fluxes. Good qualitative agreement is found.
Abstract
Terms in the transformed Eulerian mean equations are computed for the stratospheric warmings of December and January, 1976–77, together with cross sections showing the directions of the Eliassen-Palm (EP) fluxes and residual mean meridional circulations. The picture of warmings that emerges from them transformed diagnostics is compared and contrasted with that presented for the same events by O'Neill and Taylor (1979), whose analysis was based on the traditional momentum and heat budgets. The transformed equations lead to a simpler interpretation of warmings mainly because one term, the convergence of the EP flux, embodies to good approximation the total effect of the waves in forcing the mean flow. Zonal mean temperature changes occur essentially as an adiabatic response to the wave-induced, residual mean meridional circulation. Some evidence that critical lines may act to absorb rather than to reflect planetary waves an a short time-scale is presented.
One aspect of these and other warmings of dynamical importance is the switching of the EP fluxes which occurs from an upward and equatorward direction to an upward and poleward direction. It is proposed that this represents a feedback effect on wave propagation of an evolving mean flow. Some support for this idea comes from an analysis of ray paths in the meridional plane. They are computed for different mean wind fields which arise during a warming, and give the direction of wave propagation according to a linear theory based on the WKB approximation. Within the approximations of the theory, the mean state determines how the planetary waves propagate meridionally and vertically through a quantity Q which may be termed a refractive index. Rays are refracted poleward or equatorward according to whether Q increases poleward or equatorward. After a minor warming when the stratospheric jet has been replaced by weak westerlies, a local minimum in Q occurs in the stratosphere and rays reaching upper levels are refracted equatorward. They are refracted poleward when a strong jet is established at high latitudes, which implies that subsequent wave disturbances are focused into the polar cap, leading there to a deceleration of the mean wind. The ray paths are compared with the directions of wave propagation as given by the observed EP fluxes. Good qualitative agreement is found.
Abstract
Since late 1978, the U.K. Meteorological Office (UKMO) has processed accurate radiance measurements of the stratosphere from a set of three radiometers (Statospheric Sounding Unit, Microwave Sounding Unit, High-Resolution Infrared Sounder) flown on satellites in the TIROS series. The radiometers scan both sides of the subsatellite track giving almost global coverage. UKMO uses its own retrieval algorithm to derive thickness from radiances. The retrieval is a linear, physiralstatistical method that utilizes a reference set of temperature profiles as a priori data. Thickness are added to a contemporaneous field of geopotential height at 100 hPa to give geopotential heights at standard pressure levels in the stratosphere up to 1 hPa. Global synoptic fields for 1200 UTC are produced every day on a regular latitudelongitude grid by linear interpolation in space and time. The paper describes the retrieval method and objective analysis in detail. It outlines the availability of data in the 14-year archive and summarizes the main findings of several studies on data quality. Finally, it tells prospective users how to get the data and what cheeks they should make before trying to interpret them.
Abstract
Since late 1978, the U.K. Meteorological Office (UKMO) has processed accurate radiance measurements of the stratosphere from a set of three radiometers (Statospheric Sounding Unit, Microwave Sounding Unit, High-Resolution Infrared Sounder) flown on satellites in the TIROS series. The radiometers scan both sides of the subsatellite track giving almost global coverage. UKMO uses its own retrieval algorithm to derive thickness from radiances. The retrieval is a linear, physiralstatistical method that utilizes a reference set of temperature profiles as a priori data. Thickness are added to a contemporaneous field of geopotential height at 100 hPa to give geopotential heights at standard pressure levels in the stratosphere up to 1 hPa. Global synoptic fields for 1200 UTC are produced every day on a regular latitudelongitude grid by linear interpolation in space and time. The paper describes the retrieval method and objective analysis in detail. It outlines the availability of data in the 14-year archive and summarizes the main findings of several studies on data quality. Finally, it tells prospective users how to get the data and what cheeks they should make before trying to interpret them.
Abstract
Spectral investigation of horizontal moisture flux data at a number of levels above Bedford, Mass., yields estimates of rms aliasing errors corresponding to various sampling intervals. An attempt is made to relate the analyses to the problem of the design of a sampling system for an atmospheric water balance study over Lake Ontario proposed for the International Field Year on the Great Lakes in 1972. Results suggest that errors in estimates of vertically integrated, total horizontal moisture flux may be lowered by 50% if the sampling interval is reduced from 12 to 2 hr.
Abstract
Spectral investigation of horizontal moisture flux data at a number of levels above Bedford, Mass., yields estimates of rms aliasing errors corresponding to various sampling intervals. An attempt is made to relate the analyses to the problem of the design of a sampling system for an atmospheric water balance study over Lake Ontario proposed for the International Field Year on the Great Lakes in 1972. Results suggest that errors in estimates of vertically integrated, total horizontal moisture flux may be lowered by 50% if the sampling interval is reduced from 12 to 2 hr.
Abstract
Trajectory calculations using horizontal winds from the U.K. Meteorological Office data assimilation system and vertical velocities from a radiation calculation are used to simulate the three-dimensional motion of air through the stratospheric polar vortex for Northern Hemisphere (NH) and Southern Hemisphere (SH) winters since the launch of the Upper Atmosphere Research Satellite. Throughout the winter, air from the upper stratosphere moves poleward and descends into the middle stratosphere. In the SH lower to middle stratosphere, strongest descent occurs near the edge of the polar vortex, with that edge defined by mixing characteristics. The NH shows a similar pattern in late winter, but in early winter strongest descent is near the center of the vortex, except when wave activity is particularly strong. Strong barriers to latitudinal mixing exist above about 420 K throughout the winter. Below this, the polar night jet is weak in early winter, so air descending below that level mixes between polar and middle latitudes. In late winter, parcels descend less and the polar night jet moves downward, so there is less latitudinal mixing. The degree of mixing in the lower stratosphere thus depends strongly on the position and evolution of the polar night jet and on the amount of descent experienced by the air parcels; these characteristics show considerable interannual variability in both hemispheres.
The computed trajectories provide a three-dimensional picture of air motion during the final warming. Large tongues of air are drawn off the vortex and stretched into increasingly long and narrow tongues extending into low latitudes. This vortex erosion process proceeds more rapidly in the NH than in the SH. In the lower stratosphere, the majority of air parcels remain confined within a lingering region of strong potential vorticity gradients into December in the SH and April in the NH, well after the vortex breaks up in the midstratosphere.
Abstract
Trajectory calculations using horizontal winds from the U.K. Meteorological Office data assimilation system and vertical velocities from a radiation calculation are used to simulate the three-dimensional motion of air through the stratospheric polar vortex for Northern Hemisphere (NH) and Southern Hemisphere (SH) winters since the launch of the Upper Atmosphere Research Satellite. Throughout the winter, air from the upper stratosphere moves poleward and descends into the middle stratosphere. In the SH lower to middle stratosphere, strongest descent occurs near the edge of the polar vortex, with that edge defined by mixing characteristics. The NH shows a similar pattern in late winter, but in early winter strongest descent is near the center of the vortex, except when wave activity is particularly strong. Strong barriers to latitudinal mixing exist above about 420 K throughout the winter. Below this, the polar night jet is weak in early winter, so air descending below that level mixes between polar and middle latitudes. In late winter, parcels descend less and the polar night jet moves downward, so there is less latitudinal mixing. The degree of mixing in the lower stratosphere thus depends strongly on the position and evolution of the polar night jet and on the amount of descent experienced by the air parcels; these characteristics show considerable interannual variability in both hemispheres.
The computed trajectories provide a three-dimensional picture of air motion during the final warming. Large tongues of air are drawn off the vortex and stretched into increasingly long and narrow tongues extending into low latitudes. This vortex erosion process proceeds more rapidly in the NH than in the SH. In the lower stratosphere, the majority of air parcels remain confined within a lingering region of strong potential vorticity gradients into December in the SH and April in the NH, well after the vortex breaks up in the midstratosphere.
Abstract
The polar vortex of the Southern Hemisphere (SH) split dramatically during September 2002. The large-scale dynamical effects were manifest throughout the stratosphere and upper troposphere, corresponding to two distinct cyclonic centers in the upper troposphere–stratosphere system. High-resolution (T511) ECMWF analyses, supplemented by analyses from the Met Office, are used to present a detailed dynamical analysis of the event. First, the anomalous evolution of the SH polar vortex is placed in the context of the evolution that is usually witnessed during spring. Then high-resolution fields of potential vorticity (PV) from ECMWF are used to reveal several dynamical features of the split. Vortex fragments are rapidly sheared out into sheets of high (modulus) PV, which subsequently roll up into distinct synoptic-scale vortices. It is proposed that the stratospheric circulation becomes hydrodynamically unstable through a significant depth of the troposphere–stratosphere system as the polar vortex elongates.
Abstract
The polar vortex of the Southern Hemisphere (SH) split dramatically during September 2002. The large-scale dynamical effects were manifest throughout the stratosphere and upper troposphere, corresponding to two distinct cyclonic centers in the upper troposphere–stratosphere system. High-resolution (T511) ECMWF analyses, supplemented by analyses from the Met Office, are used to present a detailed dynamical analysis of the event. First, the anomalous evolution of the SH polar vortex is placed in the context of the evolution that is usually witnessed during spring. Then high-resolution fields of potential vorticity (PV) from ECMWF are used to reveal several dynamical features of the split. Vortex fragments are rapidly sheared out into sheets of high (modulus) PV, which subsequently roll up into distinct synoptic-scale vortices. It is proposed that the stratospheric circulation becomes hydrodynamically unstable through a significant depth of the troposphere–stratosphere system as the polar vortex elongates.
Abstract
Giant planet tropospheres lack a solid, frictional bottom boundary. The troposphere instead smoothly transitions to a denser fluid interior below. However, Saturn exhibits a hot, symmetric cyclone centered directly on each pole, bearing many similarities to terrestrial hurricanes. Transient cyclonic features are observed at Neptune’s South Pole as well. The wind-induced surface heat exchange mechanism for tropical cyclones on Earth requires energy flux from a surface, so another mechanism must be responsible for the polar accumulation of cyclonic vorticity on giant planets. Here it is argued that the vortical hot tower mechanism, claimed by Montgomery et al. and others to be essential for tropical cyclone formation, is the key ingredient responsible for Saturn’s polar vortices. A 2.5-layer polar shallow-water model, introduced by O’Neill et al., is employed and described in detail. The authors first explore freely evolving behavior and then forced-dissipative behavior. It is demonstrated that local, intense vertical mass fluxes, representing baroclinic moist convective thunderstorms, can become vertically aligned and accumulate cyclonic vorticity at the pole. A scaling is found for the energy density of the model as a function of control parameters. Here it is shown that, for a fixed planetary radius and deformation radius, total energy density is the primary predictor of whether a strong polar vortex forms. Further, multiple very weak jets are formed in simulations that are not conducive to polar cyclones.
Abstract
Giant planet tropospheres lack a solid, frictional bottom boundary. The troposphere instead smoothly transitions to a denser fluid interior below. However, Saturn exhibits a hot, symmetric cyclone centered directly on each pole, bearing many similarities to terrestrial hurricanes. Transient cyclonic features are observed at Neptune’s South Pole as well. The wind-induced surface heat exchange mechanism for tropical cyclones on Earth requires energy flux from a surface, so another mechanism must be responsible for the polar accumulation of cyclonic vorticity on giant planets. Here it is argued that the vortical hot tower mechanism, claimed by Montgomery et al. and others to be essential for tropical cyclone formation, is the key ingredient responsible for Saturn’s polar vortices. A 2.5-layer polar shallow-water model, introduced by O’Neill et al., is employed and described in detail. The authors first explore freely evolving behavior and then forced-dissipative behavior. It is demonstrated that local, intense vertical mass fluxes, representing baroclinic moist convective thunderstorms, can become vertically aligned and accumulate cyclonic vorticity at the pole. A scaling is found for the energy density of the model as a function of control parameters. Here it is shown that, for a fixed planetary radius and deformation radius, total energy density is the primary predictor of whether a strong polar vortex forms. Further, multiple very weak jets are formed in simulations that are not conducive to polar cyclones.
Abstract
A recent observational analysis has reported significant repeating diurnal signals propagating outward at cloud-top height from tropical cyclone centers. Modeling studies suggest that the visible upper-level impacts reflect a diurnal cycle through the depth of the troposphere. In this study, the possibility of wavelike diurnal responses in tropical cyclones is characterized using 3D cloud-resolving numerical simulations with and without a diurnal cycle. Diurnal waves can only begin to propagate well beyond the storm core, and the outflow region is most receptive to near-core diurnal propagation because of its anticyclonic flow. The tropical cyclone structure appears particularly hostile to diurnal wave propagation during periods when the eyewall experiences a temporary breakdown similar to an eyewall replacement cycle.
Abstract
A recent observational analysis has reported significant repeating diurnal signals propagating outward at cloud-top height from tropical cyclone centers. Modeling studies suggest that the visible upper-level impacts reflect a diurnal cycle through the depth of the troposphere. In this study, the possibility of wavelike diurnal responses in tropical cyclones is characterized using 3D cloud-resolving numerical simulations with and without a diurnal cycle. Diurnal waves can only begin to propagate well beyond the storm core, and the outflow region is most receptive to near-core diurnal propagation because of its anticyclonic flow. The tropical cyclone structure appears particularly hostile to diurnal wave propagation during periods when the eyewall experiences a temporary breakdown similar to an eyewall replacement cycle.
Abstract
Luyten and Roemmich have shown a strong semiannual signal in zonal velocity in the upper, western part of the equatorial Indian Ocean. Their observations are modeled by assuming that they are directly forced by the observed semiannual component of zonal wind stress, which is relatively large in the equatorial Indian Ocean. The model is linear, periodic, has linear damping, uses the long-wave approximation, and can be solved analytically. A good comparison with the observations is obtained for the phase of the oscillation across the array. The predicted magnitude is somewhat smaller than in the observations. The model sensitivity to friction and the spatial distribution of the wind stress is explored. Some additional model simplifications are discussed, but it is concluded that they all detract substantially from the comparison. The main conclusion is that the observations can be accounted for as a directly forced response to the semiannual component of the near-equatorial zonal winds.
Abstract
Luyten and Roemmich have shown a strong semiannual signal in zonal velocity in the upper, western part of the equatorial Indian Ocean. Their observations are modeled by assuming that they are directly forced by the observed semiannual component of zonal wind stress, which is relatively large in the equatorial Indian Ocean. The model is linear, periodic, has linear damping, uses the long-wave approximation, and can be solved analytically. A good comparison with the observations is obtained for the phase of the oscillation across the array. The predicted magnitude is somewhat smaller than in the observations. The model sensitivity to friction and the spatial distribution of the wind stress is explored. Some additional model simplifications are discussed, but it is concluded that they all detract substantially from the comparison. The main conclusion is that the observations can be accounted for as a directly forced response to the semiannual component of the near-equatorial zonal winds.