Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: A. Wallcraft x
  • All content x
Clear All Modify Search
A. Birol Kara, Alan J. Wallcraft, and Harley E. Hurlburt

Abstract

A 1/25° × 1/25° cos(lat) (longitude × latitude) (≈3.2-km resolution) eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) is introduced for the Black Sea and used to examine the effects of ocean turbidity on upper-ocean circulation features including sea surface height and mixed layer depth (MLD) on annual mean climatological time scales. The model is a primitive equation model with a K-profile parameterization (KPP) mixed layer submodel. It uses a hybrid vertical coordinate that combines the advantages of isopycnal, σ, and z-level coordinates in optimally simulating coastal and open-ocean circulation features. This model approach is applied to the Black Sea for the first time. HYCOM uses a newly developed time-varying solar penetration scheme that treats attenuation as a continuous quantity. This scheme includes two bands of solar radiation penetration, one that is needed in the top 10 m of the water column and another that penetrates to greater depths depending on the turbidity. Thus, it is suitable for any ocean general circulation model that has fine vertical resolution near the surface. With this scheme, the optical depth–dependent attenuation of subsurface heating in HYCOM is given by monthly mean fields for the attenuation of photosynthetically active radiation (k PAR) during 1997–2001. These satellite-based climatological k PAR fields are derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) data for the spectral diffuse attenuation coefficient at 490 nm (k 490) and have been processed to have the smoothly varying and continuous coverage necessary for use in the Black Sea model applications. HYCOM simulations are driven by two sets of high-frequency climatological forcing, but no assimilation of ocean data is then used to demonstrate the importance of including spatial and temporal varying attenuation depths for the annual mean prediction of upper-ocean quantities in the Black Sea, which is very turbid (k PAR > 0.15 m−1, in general). Results are reported from three model simulations driven by each atmospheric forcing set using different values for the k PAR. A constant solar-attenuation optical depth of ≈17 m (clear water assumption), as opposed to using spatially and temporally varying attenuation depths, changes the surface circulation, especially in the eastern Black Sea. Unrealistic sub–mixed layer heating in the former results in weaker stratification at the base of the mixed layer and a deeper MLD than observed. As a result, the deep MLD off Sinop (at around 42.5°N, 35.5°E) weakens the surface currents regardless of the atmospheric forcing used in the model simulations. Using the SeaWiFS-based monthly turbidity climatology gives a shallower MLD with much stronger stratification at the base and much better agreement with observations. Because of the high Black Sea turbidity, the simulation with all solar radiation absorbed at the surface case gives results similar to the simulations using turbidity from SeaWiFS in the annual means, the aspect of the results investigated in this paper.

Full access
A. Birol Kara, Alan J. Wallcraft, and Harley E. Hurlburt

Abstract

Ocean models need over-ocean atmospheric forcing. However, such forcing is not necessarily provided near the land–sea boundary because 1) the atmospheric model grid used for forcing is frequently much coarser than the ocean model grid, and 2) some of the atmospheric model grid over the ocean includes land values near coastal regions. This paper presents a creeping sea-fill methodology to reduce the improper representation of scalar atmospheric forcing variables near coastal regions, a problem that compromises the usefulness of the fields for ocean model simulations and other offshore applications. For demonstration, atmospheric forcing variables from archived coarse-resolution gridded products—the 1.125° × 1.125° 15-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-15) and 1.0° × 1.0° Navy Operational Global Atmospheric Prediction System (NOGAPS)—are used here. A fine-resolution [1/25° × 1/25° cos(lat)], (longitude × latitude) (∼3.2 km) eddy-resolving Black Sea Hybrid Coordinate Ocean Model (HYCOM) is then forced with/without sea-filled atmospheric variables from these gridded products to simulate monthly mean climatological sea surface temperature (SST). Using only over-ocean values from atmospheric forcing fields in the ocean model simulations significantly reduces the climatological mean SST bias (by ∼1°–3°C) and rms SST difference over the seasonal cycle (by ∼2°–3°C) in coastal regions. Performance of the creeping sea-fill methodology is also directly evaluated using measurements of wind speed at 10 m above the surface from the SeaWinds scatterometer on the NASA Quick Scatterometer (QuikSCAT) satellite. Comparisons of original monthly mean wind speeds from operational ECMWF and NOGAPS products with those from QuikSCAT give basin-averaged rms differences of 1.6 and 1.4 m s−1, respectively, during 2000–03. Similar comparisons performed with sea-filled monthly mean wind speeds result in a much lower rms difference (0.7 m s−1 for both products) during the same time period, clearly confirming the accuracy of the methodology even on interannual time scales. Most of the unrealistically low wind speeds from ECMWF and NOGAPS near coastal boundaries are appropriately corrected with the use of the creeping sea fill. Wind speed errors for ECWMF and NOGAPS (mean bias of ≥ 2.5 m s−1 with respect to QuikSCAT during 2000–03) are substantially eliminated (e.g., almost no bias) near most of the land–sea boundaries. Finally, ocean, atmosphere, and coupled atmospheric–oceanic modelers need to be aware that the creeping sea fill is a promising methodology in significantly reducing the land contamination resulting from an improper land–sea mask existing in gridded coarse-resolution atmospheric products (e.g., ECMWF).

Full access
A. Birol Kara, Alan J. Wallcraft, and Harley E. Hurlburt

Abstract

This paper examines the sensitivity of sea surface temperature (SST) to water turbidity in the Black Sea using the eddy-resolving (∼3.2-km resolution) Hybrid Coordinate Ocean Model (HYCOM), which includes a nonslab K-profile parameterization (KPP) mixed layer model. The KPP model uses a diffusive attenuation coefficient of photosynthetically active radiation (k PAR) processed from a remotely sensed dataset to take water turbidity into account. Six model experiments (expt) are performed with no assimilation of any ocean data and wind/thermal forcing from two sources: 1) European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA) and 2) Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS). Forced with ECMWF, experiment 1 uses spatially and monthly varying k PAR values over the Black Sea, experiment 2 assumes all of the solar radiation is absorbed at the sea surface, and experiment 3 uses a constant k PAR value of 0.06 m−1, representing clear-water constant solar attenuation depth of 16.7 m. Experiments 4, 5, and 6 are twins of 1, 2, and 3 but forced with NOGAPS. The monthly averaged model SSTs resulting from all experiments are then compared with a fine-resolution (∼9 km) satellite-based monthly SST climatology (the Pathfinder climatology). Because of the high turbidity in the Black Sea, it is found that a clear-water constant attenuation depth (i.e., expts 3 and 6) results in SST bias as large as 3°C in comparison with standard simulations (expts 1 and 4) over most of the Black Sea in summer. In particular, when using the clear-water constant attenuation depth as opposed to using spatial and temporal k PAR, basin-averaged rms SST difference with respect to the Pathfinder SST climatology increases ∼46% (from 1.41°C in expt 1 to 2.06°C in expt 3) in the ECMWF forcing case. Similarly, basin-averaged rms SST difference increases ∼36% (from 1.39°C in expt 4 to 1.89°C in expt 6) in the NOGAPS forcing case. The standard HYCOM simulations (expts 1 and 4) have a very high basin-averaged skill score of 0.95, showing overall model success in predicting climatological SST, even with no assimilation of any SST data. In general, the use of spatially and temporally varying turbidity fields is necessary for the Black Sea OGCM studies because there is strong seasonal cycle and large spatial variation in the solar attenuation coefficient, and an additional simulation using a constant k PAR value of 0.19 m−1, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) space–time mean for the Black Sea, did not yield as accurate SST results as experiments 1 and 4. Model–data comparisons also revealed that relatively large HYCOM SST errors close to the coastal boundaries can be attributed to the misrepresentation of land– sea mask in the ECMWF and NOGAPS products. With the relatively accurate mask used in NOGAPS, HYCOM demonstrated the ability to simulate accurate SSTs in shallow water over the broad northwest shelf in the Black Sea, a region of large errors using the inaccurate mask in ECMWF. A linear relationship is found between changes in SST and changes in heat flux below the mixed layer. Specifically, a change of ∼50 W m−2 in sub-mixed-layer heat flux results in a SST change of ∼3.0°C, a value that occurs when using clear-water constant attenuation depth rather than monthly varying k PAR in the model simulations, clearly demonstrating potential impact of penetrating solar radiation on SST simulations.

Full access
A. Birol Kara, Harley E. Hurlburt, and Alan J. Wallcraft

Abstract

This study introduces exchange coefficients for wind stress (CD), latent heat flux (CL), and sensible heat flux (CS) over the global ocean. They are obtained from the state-of-the-art Coupled Ocean–Atmosphere Response Experiment (COARE) bulk algorithm (version 3.0). Using the exchange coefficients from this bulk scheme, CD, CL, and CS are then expressed as simple polynomial functions of air–sea temperature difference (TaTs)—where air temperature (Ta) is at 10 m, wind speed (Va) is at 10 m, and relative humidity (RH) is at the air–sea interface—to parameterize stability. The advantage of using polynomial-based exchange coefficients is that they do not require any iterations for stability. In addition, they agree with results from the COARE algorithm but at ≈5 times lower computation cost, an advantage that is particularly needed for ocean general circulation models (OGCMs) and climate models running at high horizontal resolution and short time steps. The effects of any water vapor flux in calculating the exchange coefficients are taken into account in the polynomial functions, a feature that is especially important at low wind speeds (e.g., Va < 5 m s−1) because air–sea mixing ratio difference can have a major effect on the stability, particularly in tropical regions. Analyses of exchange coefficients demonstrate the fact that water vapor can have substantial impact on air–sea exchange coefficients at low wind speeds. An example application of the exchange coefficients from the polynomial approach is the recalculation of climatological mean wind stress magnitude from 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data in the North Pacific Ocean over 1979–2002. Using ECMWF 10-m winds and the authors’ methodology provides accurate surface stresses while largely eliminating the orographically induced Gibb’s waves found in the original ERA-40 surface wind stresses. These can have a large amplitude near mountainous regions and can extend far into the ocean interior. This study introduces exchange coefficients of air–sea fluxes, which are applicable to the wide range of conditions occurring over the global ocean, including the air–sea stability differences across the Gulf Stream and Kuroshio, regions which have been the subject of many climate model studies. This versatility results because CD, CL, and CS are determined for Va values of 1 to 40 m s−1, (TaTs), intervals of −8° to 7°C, and RH values of 0% to 100%. Exchange coefficients presented here are called the Naval Research Laboratory (NRL) Air–Sea Exchange Coefficients (NASEC) and they are suitable for a wide range of air–sea interaction studies and model applications.

Full access
A. Birol Kara, Alan J. Wallcraft, and Harley E. Hurlburt

Abstract

A fine-resolution (≈3.2 km) Hybrid Coordinate Ocean Model (HYCOM) is used to investigate the impact of solar radiation attenuation with depth on the predictions of monthly mean sea surface height (SSH), mixed layer depth (MLD), buoyancy and heat fluxes, and near-sea surface circulation as well. The model uses spatially and temporally varying attenuation of photosynthetically available radiation (k PAR) climatologies as processed from the remotely sensed Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) to take water turbidity into account in the Black Sea. An examination of the k PAR climatology reveals a strong seasonal cycle in the water turbidity, with a basin-averaged annual climatological mean value of 0.19 m−1 over the Black Sea. Climatologically forced HYCOM simulations demonstrate that shortwave radiation below the mixed layer can be quite different based on the water turbidity, thereby affecting prediction of upper-ocean quantities in the Black Sea. The clear water constant solar attenuation depth assumption results in relatively deeper MLD (e.g., ≈+15 m in winter) in comparison to standard simulations due to the unrealistically large amount of shortwave radiation below the mixed layer, up to 100 W m−2 during April to October. Such unrealistic sub–mixed layer heating causes weaker stratification at the base of the mixed layer. The buoyancy gain associated with high solar heating in summer effectively stabilizes the upper ocean producing shallow mixed layers and elevated SSH over the most of the Black Sea. In particular, the increased stability resulting from the water turbidity reduces vertical mixing in the upper ocean and causes changes in surface-layer currents, especially in the easternmost part of the Black Sea. Monthly mean SSH anomalies from the climatologically forced HYCOM simulations were evaluated against a monthly mean SSH anomaly climatology, which was constructed using satellite altimeter data from TOPEX/ Poseidon (T/P), Geosat Follow-On (GFO), and the Earth Remote Sensing Satellite-2 (ERS-2) over 1993–2002. Model–data comparisons show that the basin-averaged root-mean-square (rms) difference is ≈4 cm between the satellite-based SSH climatology and that obtained from HYCOM simulations using spatial and temporal k PAR fields. In contrast, when all solar radiation is absorbed at the sea surface or clear water constant solar attenuation depth values of 16.7 m are used in the model simulations, the basin-averaged SSH rms difference with respect to the climatology is ≈6 cm (≈50% more). This demonstrates positive impact from using monthly varying solar attenuation depths in simulating upper-ocean quantities in the Black Sea. The monthly mean k PAR and SSH anomaly climatologies presented in this paper can also be used for other Black Sea studies.

Full access
A. Birol Kara, Alan J. Wallcraft, and Harley E. Hurlburt

Abstract

The Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) with an embedded mixed layer submodel is used to predict the climatological monthly mean sea surface temperature (SST) and surface ocean mixed layer depth (MLD) over the global ocean. The thermodynamic model simulations presented in this paper are performed using six dynamical layers plus the embedded mixed layer at 1/2° resolution in latitude and 0.703125° in longitude, globally spanning from 72°S to 65°N. These model simulations use climatological wind and thermal forcing and include no assimilation of SST or MLD data. To measure the effectiveness of the NLOM mixed layer, the annual mean and seasonal cycle of SST and MLD obtained from the model simulations are compared to those from different climatological datasets at each grid point over the global ocean. Analysis of the global error maps shows that the embedded mixed layer in NLOM gives accurate SST with atmospheric forcing even with no SST relaxation/assimilation. In this case the model gives a global root-mean-square (rms) difference of 0.37°C for the annual mean and 0.59°C over the seasonal cycle over the global ocean. The mean global correlation coefficient (R) is 0.91 for the seasonal cycle of the SST. NLOM predicts SST with an annual mean error of <0.5°C in most of the North Atlantic and North Pacific Oceans. For the MLD the model gave a global rms difference of 34 m for the annual mean and 63 m over the seasonal cycle over the global ocean in comparison to the NRL MLD climatology (NMLD). The mean global R value is 0.62 for the seasonal cycle of the MLD. Additional model–data comparisons use climatological monthly mean SST time series from 18 National Oceanic Data Center (NODC) buoys and 11 ocean weather station (OWS) hydrographic locations in the North Pacific Ocean. The median rms difference between the NLOM SSTs and SSTs at these 29 locations is 0.49°C for the seasonal cycle. Deepening and shallowing of the MLD at the all OWS locations in the northeast Pacific are captured by the model with an rms difference of <20 m and an R value of >0.85 for the seasonal cycle.

Using several statistical measures and climatologies of SST and MLD we have demonstrated that NLOM with an embedded mixed layer is able to simulate with substantial skill the climatological SST and MLD when using accurate and computationally efficient surface heat flux and solar radiation attenuation parameterizations over the global ocean. Further, this was accomplished using a model with only seven layers in the vertical, including the embedded mixed layer. Success of climatological predictions from the NLOM with an embedded mixed layer is a prerequisite for simulations using interannual atmospheric forcing with high temporal resolution. NLOM gives accurate upper-ocean quantities with atmospheric forcing even with no SST relaxation or assimilation, a strong indication that the model is a good candidate for assimilation of SST data. Finally, the techniques and datasets used here can be applied to evaluation of other ocean models in predicting the SST and MLD.

Full access
A. Birol Kara, Harley E. Hurlburt, Alan J. Wallcraft, and Mark A. Bourassa

Abstract

This study describes atmospheric forcing parameters constructed from different global climatologies, applied to the Black Sea, and investigates the sensitivity of Hybrid Coordinate Ocean Model (HYCOM) simulations to these products. Significant discussion is devoted to construction of these parameters before using them in the eddy-resolving (≈3.2-km resolution) HYCOM simulations. The main goal is to answer how the model dynamics can be substantially affected by different atmospheric forcing products in the Black Sea. Eight wind forcing products are used: four obtained from observation-based climatologies, including one based on measurements from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite, and the rest formed from operational model products. Thermal forcing parameters, including solar radiation, are formed from two operational models: the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS). Climatologically forced Black Sea HYCOM simulations (without ocean data assimilation) are then performed to assess the accuracy and sensitivity of the model sea surface temperature (SST) and sea surface circulation to these wind and thermal forcing products. Results demonstrate that the model-simulated SST structure is quite sensitive to the wind and thermal forcing products, especially near coastal regions. Despite this sensitivity, several robust features are found in the model SST in comparison to a monthly 9.3-km-resolution satellite-based Pathfinder SST climatology. Annual mean HYCOM SST usually agreed to within ≈±0.2° of the climatology in the interior of the Black Sea for any of the wind and thermal forcing products used. The fine-resolution (0.25° × 0.25°) wind forcing from the scatterometer data along with thermal forcing from NOGAPS gave the best SST simulation with a basin-averaged rms difference value of 1.21°C, especially improving model results near coastal regions. Specifically, atmospherically forced model simulations with no assimilation of any ocean data suggest that the basin-averaged rms SST differences with respect to the Pathfinder SST climatology can vary from 1.21° to 2.15°C depending on the wind and thermal forcing product. The latter rms SST difference value is obtained when using wind forcing from the National Centers for Environmental Prediction (NCEP), a product that has a too-coarse grid resolution of 1.875° × 1.875° for a small ocean basin such as the Black Sea. This paper also highlights the importance of using high-frequency (hybrid) wind forcing as opposed to monthly mean wind forcing in the model simulations. Finally, there are large variations in the annual mean surface circulation simulated using the different wind sets, with general agreement between those forced by the model-based products (vector correlation is usually >0.7). Three of the observation-based climatologies generally yield unrealistic circulation features and currents that are too weak.

Full access
Alan J. Wallcraft, A. Birol Kara, Harley E. Hurlburt, and Peter A. Rochford

Abstract

A bulk-type (modified Kraus–Turner) mixed layer model that is embedded within the Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) is introduced. It is an independent submodel loosely coupled to NLOM's dynamical core, requiring only near-surface currents, the temperature just below the mixed layer, and an estimate of the stable mixed layer depth. Coupling is achieved by explicitly distributing atmospheric forcing across the mixed layer (which can span multiple dynamic layers), and by making the heat flux and thermal expansion of seawater dependent upon the mixed layer model's sea surface temperature (SST). An advantage of this approach is that the relative independence of the dynamical solution from the mixed layer allows the initial state for simulations with the mixed layer to be defined from existing near-global model simulations spun up from rest without a mixed layer (requiring many hundreds of model years). The goal is to use the mixed layer model in near-global multidecadal simulations with realistic 6-hourly atmospheric forcing from operational weather center archives. A minimum requirement therefore is that there be no drift in yearly average SST over time. The dynamical layer densities are relaxed to climatology as a standard part of the NLOM model design, and this ensures that the temperature just below the mixed layer provided to the mixed layer submodel does not drift. The density relaxation below the mixed layer does not significantly dampen anomalies even on interannual timescales because the anomalies are largely defined by layer thickness variations. When combined with calculating the latent and sensible heat flux using model SST, this is sufficient to keep SST on track without any explicit relaxation to the SST climatology.

The sensitivity of the global ocean model to the choice of free Kraus–Turner parameters in the bulk mixed layer model is investigated by undertaking a tuning exercise to find a single set of parameters that provides a realistic SST from realistic atmospheric forcing over as much of the global ocean as possible. This is done by comparing the monthly Comprehensive Ocean Atmosphere Data Set (COADS) SST climatology to monthly averages from the model using a set of statistical metrics. A single set of mixed layer parameters is reported that gives excellent agreement with the SST climatology over most of the global ocean. The actual parameter values are probably specific to this coupled system, but the same methodology can be used to tune any mixed layer model with free parameters.

Full access
A. Birol Kara, Charlie N. Barron, Alan J. Wallcraft, and Temel Oguz

Abstract

Sea surface height (SSH) variability is presented over the Black Sea during 1993–2005. The 1/4° × 1/4° resolution daily SSH fields are formed using optimal interpolation of available altimeter data. SSH variability reveals distinct maxima in the eastern and western basins, reflecting variations in the corresponding gyres. A joint examination of SSH and sea surface temperature (SST) indicates strong relationship between the two only in winter, with correlations as high as 0.6 or more. This would reflect a steric change in sea surface height due to thermal expansion averaged over a relatively deep winter mixed layer. Newly developed SSH fields also demonstrate a switch to the positive mode of SSH starting from the end of 1996 lasting ≈4 yr. Such a climatic shift is found to be strongly related to large-scale teleconnection patterns. Finally, the daily SSH and SST anomaly fields presented in this paper can supplement various applications in the Black Sea, such as examination of biological production and mesoscale eddy dynamics.

Full access
A. Birol Kara, Alan J. Wallcraft, E. Joseph Metzger, Harley E. Hurlburt, and Chris W. Fairall

Abstract

Interannual and climatological variations of wind stress drag coefficient (CD) are examined over the global ocean from 1998 to 2004. Here CD is calculated using high temporal resolution (3- and 6-hourly) surface atmospheric variables from two datasets: 1) the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and 2) the Navy Operational Global Atmospheric Prediction System (NOGAPS). The stability-dependent CD algorithm applied to both datasets gives almost identical values over most of the global ocean, confirming the validity of results. Overall, major findings of this paper are as follows: 1) the CD value can change significantly (e.g., >50%) on 12-hourly time scales around the Kuroshio and Gulf Stream current systems; 2) there is strong seasonal variability in CD, but there is not much interannual change in the spatial variability for a given month; 3) a global mean CD ≈ 1.25 × 10−3 is found in all months, while CD ≥ 1.5 × 10−3 is prevalent over the North Pacific and North Atlantic Oceans and in southern high-latitude regions as well, and CD ≤ 1.0 × 10−3 is typical in the eastern equatorial Pacific cold tongue; and 4) including the effects of air–sea stability on CD generally causes an increase of >20% in comparison to the one calculated based on neutral conditions in the tropical regions. Finally, spatially and temporally varying CD fields are therefore needed for a variety of climate and air–sea interaction studies.

Full access