Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: A. Weisheimer x
  • Refine by Access: All Content x
Clear All Modify Search
T. N. Palmer and A. Weisheimer

Abstract

Although the development of seamless prediction systems is becoming increasingly common, there is still confusion regarding the relevance of information from initial-value forecasts for assessing the trustworthiness of the climate system’s response to forcing. A simple system that mimics the real climate system through its regime structure is used to illustrate this potential relevance. The more complex version of this model defines “reality” and a simplified version of the system represents the “model.” The model’s response to forcing is profoundly incorrect. However, the untrustworthiness of the model’s response to forcing can be deduced from the model’s initial-value unreliability. The nonlinearity of the system is crucial in accounting for this result.

Open access
M. Matsueda, A. Weisheimer, and T. N. Palmer

Abstract

In earlier work, it was proposed that the reliability of climate change projections, particularly of regional rainfall, could be improved if such projections were calibrated using quantitative measures of reliability obtained by running the same model in seasonal forecast mode. This proposal is tested for fast atmospheric processes (such as clouds and convection) by considering output from versions of the same atmospheric general circulation model run at two different resolutions and forced with prescribed sea surface temperatures and sea ice. Here output from the high-resolution version of the model is treated as a proxy for truth. The reason for using this approach is simply that the twenty-first-century climate change signal is not yet known and, hence, no climate change projections can be verified using observations. Quantitative assessments of reliability of the low-resolution model, run in seasonal hindcast mode, are used to calibrate climate change time-slice projections made with the same low-resolution model. Results show that the calibrated climate change probabilities are closer to the proxy truth than the uncalibrated probabilities. Given that seasonal forecasts are performed operationally already at several centers around the world, in a seamless forecast system they provide a resource that can be used without cost to help calibrate climate change projections and make them more reliable for users.

Full access
T. N. Palmer, F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell

Abstract

No Abstract available.

Full access
T. N. Palmer, F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell

Trustworthy probabilistic projections of regional climate are essential for society to plan for future climate change, and yet, by the nonlinear nature of climate, finite computational models of climate are inherently deficient in their ability to simulate regional climatic variability with complete accuracy. How can we determine whether specific regional climate projections may be untrustworthy in the light of such generic deficiencies? A calibration method is proposed whose basis lies in the emerging notion of seamless prediction. Specifically, calibrations of ensemblebased climate change probabilities are derived from analyses of the statistical reliability of ensemblebased forecast probabilities on seasonal time scales. The method is demonstrated by calibrating probabilistic projections from the multimodel ensembles used in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), based on reliability analyses from the seasonal forecast Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) dataset. The focus in this paper is on climate change projections of regional precipitation, though the method is more general.

Full access
M. Andrejczuk, F. C. Cooper, S. Juricke, T. N. Palmer, A. Weisheimer, and L. Zanna

Abstract

Stochastic parameterization provides a methodology for representing model uncertainty in ensemble forecasts. Here the impact on forecast reliability over seasonal time scales of three existing stochastic parameterizations in the ocean component of a coupled model is studied. The relative impacts of these schemes upon the ocean mean state and ensemble spread are analyzed. The oceanic variability induced by the atmospheric forcing of the coupled system is, in most regions, the major source of ensemble spread. The largest impact on spread and bias came from the stochastically perturbed parameterization tendency (SPPT) scheme, which has proven particularly effective in the atmosphere. The key regions affected are eddy-active regions, namely, the western boundary currents and the Southern Ocean where ensemble spread is increased. However, unlike its impact in the atmosphere, SPPT in the ocean did not result in a significant decrease in forecast error on seasonal time scales. While there are good grounds for implementing stochastic schemes in ocean models, the results suggest that they will have to be more sophisticated. Some suggestions for next-generation stochastic schemes are made.

Full access