Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: A. Woolley x
  • Refine by Access: All Content x
Clear All Modify Search
I. A. Renfrew, G. W. K. Moore, J. E. Kristjánsson, H. Ólafsson, S. L. Gray, G. N. Petersen, K. Bovis, P. R. A. Brown, I. Føre, T. Haine, C. Hay, E. A. Irvine, A Lawrence, T. Ohigashi, S. Outten, R. S. Pickart, M. Shapiro, D. Sproson, R. Swinbank, A. Woolley, and S. Zhang

Greenland has a major influence on the atmospheric circulation of the North Atlantic-western European region, dictating the location and strength of mesoscale weather systems around the coastal seas of Greenland and directly influencing synoptic-scale weather systems both locally and downstream over Europe. High winds associated with the local weather systems can induce large air-sea fluxes of heat, moisture, and momentum in a region that is critical to the overturning of the thermohaline circulation, and thus play a key role in controlling the coupled atmosphere-ocean climate system.

The Greenland Flow Distortion Experiment (GFDex) is investigating the role of Greenland in defining the structure and predictability of both local and downstream weather systems through a program of aircraft-based observation and numerical modeling. The GFDex observational program is centered upon an aircraft-based field campaign in February and March 2007, at the dawn of the International Polar Year. Twelve missions were flown with the Facility for Airborne Atmospheric Measurements' BAe-146, based out of the Keflavik, Iceland. These included the first aircraft-based observations of a reverse tip jet event, the first aircraft-based observations of barrier winds off of southeast Greenland, two polar mesoscale cyclones, a dramatic case of lee cyclogenesis, and several targeted observation missions into areas where additional observations were predicted to improve forecasts.

In this overview of GFDex the background, aims and objectives, and facilities and logistics are described. A summary of the campaign is provided, along with some of the highlights of the experiment.

Full access
G. Vaughan, J. Methven, D. Anderson, B. Antonescu, L. Baker, T. P. Baker, S. P. Ballard, K. N. Bower, P. R. A. Brown, J. Chagnon, T. W. Choularton, J. Chylik, P. J. Connolly, P. A. Cook, R. J. Cotton, J. Crosier, C. Dearden, J. R. Dorsey, T. H. A. Frame, M. W. Gallagher, M. Goodliff, S. L. Gray, B. J. Harvey, P. Knippertz, H. W. Lean, D. Li, G. Lloyd, O. Martínez–Alvarado, J. Nicol, J. Norris, E. Öström, J. Owen, D. J. Parker, R. S. Plant, I. A. Renfrew, N. M. Roberts, P. Rosenberg, A. C. Rudd, D. M. Schultz, J. P. Taylor, T. Trzeciak, R. Tubbs, A. K. Vance, P. J. van Leeuwen, A. Wellpott, and A. Woolley

Abstract

The Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) project aims to improve forecasts of high-impact weather in extratropical cyclones through field measurements, high-resolution numerical modeling, and improved design of ensemble forecasting and data assimilation systems. This article introduces DIAMET and presents some of the first results. Four field campaigns were conducted by the project, one of which, in late 2011, coincided with an exceptionally stormy period marked by an unusually strong, zonal North Atlantic jet stream and a succession of severe windstorms in northwest Europe. As a result, December 2011 had the highest monthly North Atlantic Oscillation index (2.52) of any December in the last 60 years. Detailed observations of several of these storms were gathered using the U.K.’s BAe 146 research aircraft and extensive ground-based measurements. As an example of the results obtained during the campaign, observations are presented of Extratropical Cyclone Friedhelm on 8 December 2011, when surface winds with gusts exceeding 30 m s–1 crossed central Scotland, leading to widespread disruption to transportation and electricity supply. Friedhelm deepened 44 hPa in 24 h and developed a pronounced bent-back front wrapping around the storm center. The strongest winds at 850 hPa and the surface occurred in the southern quadrant of the storm, and detailed measurements showed these to be most intense in clear air between bands of showers. High-resolution ensemble forecasts from the Met Office showed similar features, with the strongest winds aligned in linear swaths between the bands, suggesting that there is potential for improved skill in forecasts of damaging winds.

Open access
Howard J. Diamond, Carl J. Schreck III, Emily J. Becker, Gerald D. Bell, Eric S. Blake, Stephanie Bond, Francis G. Bringas, Suzana J. Camargo, Lin Chen, Caio A. S. Coelho, Ricardo Domingues, Stanley B. Goldenberg, Gustavo Goni, Nicolas Fauchereau, Michael S. Halpert, Qiong He, Philip J. Klotzbach, John A. Knaff, Michelle L'Heureux, Chris W. Landsea, I.-I. Lin, Andrew M. Lorrey, Jing-Jia Luo, Kyle MacRitchie, Andrew D. Magee, Ben Noll, Richard J. Pasch, Alexandre B. Pezza, Matthew Rosencrans, Michael K. Tippet, Blair C. Trewin, Ryan E. Truchelut, Bin Wang, Hui Wang, Kimberly M. Wood, John-Mark Woolley, and Steven H. Young
Full access
Stephen Baxter, Gerald D Bell, Eric S Blake, Francis G Bringas, Suzana J Camargo, Lin Chen, Caio A. S Coelho, Ricardo Domingues, Stanley B Goldenberg, Gustavo Goni, Nicolas Fauchereau, Michael S Halpert, Qiong He, Philip J Klotzbach, John A Knaff, Michelle L'Heureux, Chris W Landsea, I.-I Lin, Andrew M Lorrey, Jing-Jia Luo, Andrew D Magee, Richard J Pasch, Petra R Pearce, Alexandre B Pezza, Matthew Rosencrans, Blair C Trewin, Ryan E Truchelut, Bin Wang, H Wang, Kimberly M Wood, and John-Mark Woolley
Free access