Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Aart Overeem x
  • Refine by Access: All Content x
Clear All Modify Search
Aart Overeem, Remko Uijlenhoet, and Hidde Leijnse


The Royal Netherlands Meteorological Institute (KNMI) operates two dual-polarization C-band weather radars in simultaneous transmission and reception (STAR; i.e., horizontally and vertically polarized pulses are transmitted simultaneously) mode, providing 2D radar rainfall products. Despite the application of Doppler and speckle filtering, remaining nonmeteorological echoes (especially sea clutter) mainly due to anomalous propagation still pose a problem. This calls for additional filtering algorithms, which can be realized by means of polarimetry. Here we explore the effectiveness of the open-source wradlib fuzzy echo classification and clutter identification based on polarimetric moments. Based on our study, this has recently been extended with the depolarization ratio and clutter phase alignment as new decision variables. Optimal values for weights of the different membership functions and threshold are determined employing a 4-h calibration dataset from one radar. The method is applied to a full year of volumetric data from the two radars in the Dutch temperate climate. The verification focuses on the presence of remaining nonmeteorological echoes by mapping the number of exceedances of radar reflectivity factors for given thresholds. Moreover, accumulated rainfall maps are obtained to detect unrealistically large rainfall depths. The results are compared to those for which no further filtering has been applied. Verification against rain gauge data reveals that only a little precipitation is removed. Because the fuzzy logic algorithm removes many nonmeteorological echoes, the practice to composite data from both radars in logarithmic space to hide these echoes is abandoned and replaced by linearly averaging reflectivities.

Free access
Aart Overeem, Iwan Holleman, and Adri Buishand


Weather radars give quantitative precipitation estimates over large areas with high spatial and temporal resolutions not achieved by conventional rain gauge networks. Therefore, the derivation and analysis of a radar-based precipitation “climatology” are highly relevant. For that purpose, radar reflectivity data were obtained from two C-band Doppler weather radars covering the land surface of the Netherlands (≈3.55 × 104 km2). From these reflectivities, 10 yr of radar rainfall depths were constructed for durations D of 1, 2, 4, 8, 12, and 24 h with a spatial resolution of 2.4 km and a data availability of approximately 80%. Different methods are compared for adjusting the bias in the radar precipitation depths. Using a dense manual gauge network, a vertical profile of reflectivity (VPR) and a spatial adjustment are applied separately to 24-h (0800–0800 UTC) unadjusted radar-based precipitation depths. Further, an automatic rain gauge network is employed to perform a mean-field bias adjustment to unadjusted 1-h rainfall depths. A new adjustment method is developed (referred to as MFBS) that combines the hourly mean-field bias adjustment and the daily spatial adjustment methods. The record of VPR gradients, obtained from the VPR adjustment, reveals a seasonal cycle that can be related to the type of precipitation. A verification with automatic (D ≤ 24 h) and manual (D = 24 h) rain gauge networks demonstrates that the adjustments remove the systematic underestimation of precipitation by radar. The MFBS adjustment gives the best verification results and reduces the residual (radar minus rain gauge depth) standard deviation considerably. The adjusted radar dataset is used to obtain exceedance probabilities, maximum rainfall depths, mean annual rainfall frequencies, and spatial correlations. Such a radar rainfall climatology is potentially valuable for the improvement of rainfall parameterization in weather and climate models and the design of hydraulic structures.

Full access
Linda Bogerd, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet


Applications like drought monitoring and forecasting can profit from the global and near-real-time availability of satellite-based precipitation estimates once their related uncertainties and challenges are identified and treated. To this end, this study evaluates the IMERG V06B Late Run precipitation product from the Global Precipitation Measurement mission (GPM), a multisatellite product that combines space-based radar, passive microwave (PMW), and infrared (IR) data into gridded precipitation estimates. The evaluation is performed on the spatiotemporal resolution of IMERG (0.1° × 0.1°, 30 min) over the Netherlands over a 5-yr period. A gauge-adjusted radar precipitation product from the Royal Netherlands Meteorological Institute (KNMI) is used as reference, against which IMERG shows a large positive bias. To find the origin of this systematic overestimation, the data are divided into seasons, rainfall intensity ranges, echo top height (ETH) ranges, and categories based on the relative contributions of IR, morphing, and PMW data to the IMERG estimates. Furthermore, the specific radiometer is identified for each PMW-based estimate. IMERG’s detection performance improves with higher ETH and rainfall intensity, but the associated error and relative bias increase as well. Severe overestimation occurs during low-intensity rainfall events and is especially linked to PMW observations. All individual PMW instruments show the same pattern: overestimation of low-intensity events and underestimation of high-intensity events. IMERG misses a large fraction of shallow rainfall events, which is amplified when IR data are included. Space-based retrieval of shallow and low-intensity precipitation events should improve before IMERG can become accurate over the middle and high latitudes.

Restricted access
Thomas C. van Leth, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet


We investigate the spatiotemporal structure of rainfall at spatial scales from 7 m to over 200 km in the Netherlands. We used data from two networks of laser disdrometers with complementary interstation distances in two Dutch cities (comprising five and six disdrometers, respectively) and a Dutch nationwide network of 31 automatic rain gauges. The smallest aggregation interval for which raindrop size distributions were collected by the disdrometers was 30 s, while the automatic rain gauges provided 10-min rainfall sums. This study aims to supplement other micro-γ investigations (usually performed in the context of spatial rainfall variability within a weather radar pixel) with new data, while characterizing the correlation structure across an extended range of scales. To quantify the spatiotemporal variability, we employ a two-parameter exponential model fitted to the spatial correlograms and characterize the parameters of the model as a function of the temporal aggregation interval. This widely used method allows for a meaningful comparison with seven other studies across contrasting climatic settings all around the world. We also separately analyzed the intermittency of the rainfall observations. We show that a single parameterization, consisting of a two-parameter exponential spatial model as a function of interstation distance combined with a power-law model for decorrelation distance as a function of aggregation interval, can coherently describe rainfall variability (both spatial correlation and intermittency) across a wide range of scales. Limiting the range of scales to those typically found in micro-γ variability studies (including four of the seven studies to which we compare our results) skews the parameterization and reduces its applicability to larger scales.

Open access
Aart Overeem, Hylke de Vries, Hassan Al Sakka, Remko Uijlenhoet, and Hidde Leijnse


The Royal Netherlands Meteorological Institute (KNMI) operates two operational dual-polarization C-band weather radars providing 2D radar rainfall products. Attenuation can result in severe underestimation of rainfall amounts, particularly in convective situations that are known to have high impact on society. To improve the radar-based precipitation estimates, two attenuation correction methods are evaluated and compared: 1) modified Kraemer (MK) method, i.e., Hitschfeld–Bordan where parameters of the power-law Z hk h relation are adjusted such that reflectivities in the entire dataset do not exceed 59 dBZ h and attenuation correction is limited to 10 dB; and 2) using two-way path-integrated attenuation computed from the dual-polarization moment specific differential phase K dp (Kdp method). In both cases the open-source Python library wradlib is employed for the actual attenuation correction. A radar voxel only contributes to the computed path-integrated attenuation if its height is below the forecasted freezing-level height from the numerical weather prediction model HARMONIE-AROME. The methods are effective in improving hourly and daily quantitative precipitation estimation (QPE), where the Kdp method performs best. The verification against rain gauge data shows that the underestimation diminishes from 55% to 37% for hourly rainfall for the Kdp method when the gauge indicates more than 10 mm of rain in that hour. The improvement for the MK method is less pronounced, with a resulting underestimation of 40%. The stability of the MK method holds a promise for application to data archives from single-polarization radars.

Open access