Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Adam Varble x
  • All content x
Clear All Modify Search
Adam Varble

Abstract

Contiguous time–height cloud objects at the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site are matched with surface condensation nuclei (CN) concentrations and retrieved thermodynamic and kinematic vertical profiles for warm-cloud-base, cold-cloud-top systems in convectively unstable environments. Statistical analyses show that previously published conclusions that increasing CN concentrations cause a decrease in minimum cloud-top temperature (CTT) at the SGP site through the aerosol convective invigoration effect are unfounded. The CN–CTT relationship is statistically insignificant, while correlations between convective available potential energy (CAPE), level of neutral buoyancy (LNB), and CN concentration account for most of the change in the CN–CTT positive correlation. Removal of clouds with minimum CTTs > −36°C from the analysis eliminates the CN–CTT correlation. Composited dirty conditions at the SGP have ~1°C-warmer low levels and ~1°C-cooler upper levels than clean conditions. This correlation between aerosol concentrations and thermodynamic profiles may be caused by an increase in regional rainfall preceding deep convective conditions as CN concentration decreases. Increased rainfall can be expected to increase wet deposition of aerosols, cool low-level temperatures, and warm upper-level temperatures. The masking of a potential aerosol effect by such small thermodynamic changes implies that the strategy of analyzing subsets of aerosol data by binned meteorological factor values is not a valid method for discerning an aerosol effect in some situations. These findings highlight the need for more careful, detailed, and strategic observations to confidently isolate and quantify an aerosol deep convective invigoration effect.

Full access
Adam Varble, Hugh Morrison, and Edward Zipser

Abstract

Simulations of a squall line observed on 20 May 2011 during the Midlatitude Continental Convective Clouds Experiment (MC3E) using 750- and 250-m horizontal grid spacing are performed. The higher-resolution simulation has less upshear-tilted deep convection and a more elevated rear inflow jet than the coarser-resolution simulation in better agreement with radar observations. A stronger cold pool eventually develops in the 250-m run; however, the more elevated rear inflow counteracts the cold pool circulation to produce more upright convective cores relative to the 750-m run. The differing structure in the 750-m run produces excessive midlevel front-to-rear detrainment, reinforcing excessive latent cooling and rear inflow descent at the rear of the stratiform region in a positive feedback. The contrasting mesoscale circulations are connected to early stage deep convective draft differences in the two simulations. Convective downdraft condensate mass, latent cooling, and downward motion all increase with downdraft area similarly in both simulations. However, the 750-m run has a relatively greater number of wide and fewer narrow downdrafts than the 250-m run averaged to the same 750-m grid, a consequence of downdrafts being under-resolved in the 750-m run. Under-resolved downdrafts in the 750-m run are associated with under-resolved updrafts and transport mid–upper-level zonal momentum downward to low levels too efficiently in the early stage deep convection. These results imply that under-resolved convective drafts in simulations may vertically transport air too efficiently and too far vertically, potentially biasing buoyancy and momentum distributions that impact mesoscale convective system evolution.

Free access
Alexandria Gingrey, Adam Varble, and Edward Zipser

Abstract

TRMM PR 2A25, version 7 (V7), retrievals of reflectivity Z and rainfall rate R are compared with WSR-88D dual-polarimetric S-band radar data for 28 radars over the southeastern United States after matching their horizontal resolution and sampling. TRMM Ku-band measurements are converted to S-band approximations to more directly compare reflectivity estimates. Rain rates are approximated from WSR-88D data using the CSU–hydrometeor identification rainfall optimization (HIDRO) algorithm. Tropics-wide TRMM retrievals confirm previous findings of a low overlap fraction between extreme convective intensity, as approximated by the maximum 40-dBZ height, and extreme near-surface rain rates. WSR-88D data also confirm this low overlap but show that it is likely higher than TRMM PR retrievals indicate. For maximum 40-dBZ echo heights that extend above the freezing level, mean WSR-88D reflectivities at low levels are approximately 2 dB higher than TRMM PR reflectivities. Higher WSR-88D-retrieved rain rates for a given low-level reflectivity combine with these higher low-level reflectivities for a given maximum 40-dBZ height to produce rain rates that are approximately double those retrieved by the TRMM PR for maximum 40-dBZ heights that extend above the freezing level. TRMM PR path-integrated attenuation, and WSR-88D specific differential phase, differential reflectivity, and hail fraction indicate that the TRMM PR 2A25 V7 algorithm is possibly misidentifying low–midlevel hail and/or graupel as greater attenuating liquid, or vice versa. This misidentification, coupled with underestimation of path-integrated attenuation caused by nonuniform beamfilling and higher rain rates produced by specific differential phase (KDP)–R than ZR relationships, results in low-biased 2A25 V7 rain rates in intense convection.

Full access
McKenna W. Stanford, Hugh Morrison, and Adam Varble

Abstract

This study investigates impacts of altering subgrid-scale mixing in “convection-permitting” kilometer-scale horizontal-grid-spacing (Δh) simulations by applying either constant or stochastic multiplicative factors to the horizontal mixing coefficients within the Weather Research and Forecasting Model. In quasi-idealized 1-km Δh simulations of two observationally based squall-line cases, constant enhanced mixing produces larger updraft cores that are more dilute at upper levels, weakens the cold pool, rear-inflow jet, and front-to-rear flow of the squall line, and degrades the model’s effective resolution. Reducing mixing by a constant multiplicative factor has the opposite effect on all metrics. Completely turning off parameterized horizontal mixing produces bulk updraft statistics and squall-line mesoscale structure closest to an LES “benchmark” among all 1-km simulations, although the updraft cores are too undilute. The stochastic mixing scheme, which applies a multiplicative factor to the mixing coefficients that varies stochastically in time and space, is employed at 0.5-, 1-, and 2-km Δh. It generally reduces midlevel vertical velocities and enhances upper-level vertical velocities compared to simulations using the standard mixing scheme, with more substantial impacts at 1- and 2-km Δh compared to 0.5-km Δh. The stochastic scheme also increases updraft dilution to better agree with the LES for one case, but has less impact on the other case. Stochastic mixing acts to weaken the cold pool but without a significant impact on squall-line propagation. It also does not affect the model’s overall effective resolution unlike applying constant multiplicative factors to the mixing coefficients.

Restricted access
T. Connor Nelson, James Marquis, Adam Varble, and Katja Friedrich

Abstract

The Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI) projects deployed a high-spatiotemporal-resolution radiosonde network to examine environments supporting deep convection in the complex terrain of central Argentina. This study aims to characterize atmospheric profiles most representative of the near-cloud environment (in time and space) to identify the mesoscale ingredients affecting storm initiation and growth. Spatiotemporal autocorrelation analysis of the soundings reveals that there is considerable environmental heterogeneity, with boundary layer thermodynamic and kinematic fields becoming statistically uncorrelated on scales of 1–2 h and 30 km. Using this as guidance, we examine a variety of environmental parameters derived from soundings collected within close proximity (30 km in space and 30 min in time) of 44 events over 9 days where the atmosphere either: 1) supported the initiation of sustained precipitating convection, 2) yielded weak and short-lived precipitating convection, or 3) produced no precipitating convection in disagreement with numerical forecasts from convection-allowing models (i.e., Null events). There are large statistical differences between the Null event environments and those supporting any convective precipitation. Null event profiles contained larger convective available potential energy, but had low free-tropospheric relative humidity, higher freezing levels, and evidence of limited horizontal convergence near the terrain at low levels that likely suppressed deep convective growth. We also present evidence from the radiosonde and satellite measurements that flow–terrain interactions may yield gravity wave activity that affects CI outcome.

Restricted access
John M. Peters, Hugh Morrison, Adam C. Varble, Walter M. Hannah, and Scott E. Giangrande

Abstract

Research has suggested that the structure of deep convection often consists of a series of rising thermals, or “thermal chain,” which contrasts with existing conceptual models that are used to construct cumulus parameterizations. Simplified theoretical expressions for updraft properties obtained in Part I of this study are used to develop a hypothesis explaining why this structure occurs. In this hypothesis, cumulus updraft structure is strongly influenced by organized entrainment below the updraft’s vertical velocity maximum. In a dry environment, this enhanced entrainment can locally reduce condensation rates and increase evaporation, thus eroding buoyancy. For moderate-to-large initial cloud radius R, this breaks up the updraft into a succession of discrete pulses of rising motion (i.e., a thermal chain). For small R, this leads to the structure of a single, isolated rising thermal. In contrast, moist environments are hypothesized to favor plume-like updrafts for moderate-to-large R. In a series of axisymmetric numerical cloud simulations, R and environmental relative humidity (RH) are systematically varied to test this hypothesis. Vertical profiles of fractional entrainment rate, passive tracer concentration, buoyancy, and vertical velocity from these runs agree well with vertical profiles calculated from the theoretical expressions in Part I. Analysis of the simulations supports the hypothesized dependency of updraft structure on R and RH, that is, whether it consists of an isolated thermal, a thermal chain, or a plume, and the role of organized entrainment in driving this dependency. Additional three-dimensional (3D) turbulent cloud simulations are analyzed, and the behavior of these 3D runs is qualitatively consistent with the theoretical expressions and axisymmetric simulations.

Restricted access
Hugh Morrison, John M. Peters, Adam C. Varble, Walter M. Hannah, and Scott E. Giangrande

Abstract

Recent studies have shown that cumulus updrafts often consist of a succession of discrete rising thermals with spherical vortex-like circulations. In this paper, a theory is developed for why this “thermal chain” structure occurs. Theoretical expressions are obtained for a passive tracer, buoyancy, and vertical velocity in axisymmetric moist updrafts. Analysis of these expressions suggests that the thermal chain structure arises from enhanced lateral mixing associated with intrusions of dry environmental air below an updraft’s vertical velocity maximum. This dry-air entrainment reduces buoyancy locally. Consequently, the updraft flow above levels of locally reduced buoyancy separates from below, leading to a breakdown of the updraft into successive discrete thermals. The range of conditions in which thermal chains exist is also analyzed from the theoretical expressions. A transition in updraft structure from isolated rising thermal, to thermal chain, to starting plume occurs with increases in updraft width, environmental relative humidity, and/or convective available potential energy. Corresponding expressions for the bulk fractional entrainment rate ε are also obtained. These expressions indicate rather complicated entrainment behavior of ascending updrafts, with local enhancement of ε up to a factor of ~2 associated with the aforementioned environmental-air intrusions, consistent with recent large-eddy simulation (LES) studies. These locally large entrainment rates contribute significantly to overall updraft dilution in thermal chain-like updrafts, while other regions within the updraft can remain relatively undilute. Part II of this study compares results from the theoretical expressions to idealized numerical simulations and LES.

Restricted access
Zachary J. Lebo, Ben J. Shipway, Jiwen Fan, Istvan Geresdi, Adrian Hill, Annette Miltenberger, Hugh Morrison, Phil Rosenberg, Adam Varble, and Lulin Xue
Full access