Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Adrian Lock x
  • Refine by Access: All Content x
Clear All Modify Search
Mark J. Webb, Adrian P. Lock, and F. Hugo Lambert

Abstract

Low-level cloud feedbacks vary in magnitude but are positive in most climate models, due to reductions in low-level cloud fraction. This study explores the impact of surface evaporation on low-level cloud fraction feedback by performing climate change experiments with the aquaplanet configuration of the HadGEM2-A climate model, forcing surface evaporation to increase at different rates in two ways. Forcing the evaporation diagnosed in the surface scheme to increase at 7% K−1 with warming (more than doubling the hydrological sensitivity) results in an increase in global mean low-level cloud fraction and a negative global cloud feedback, reversing the signs of these responses compared to the standard experiments. The estimated inversion strength (EIS) increases more rapidly in these surface evaporation forced experiments, which is attributed to additional latent heat release and enhanced warming of the free troposphere. Stimulating a 7% K−1 increase in surface evaporation via enhanced atmospheric radiative cooling, however, results in a weaker EIS increase compared to the standard experiments and a slightly stronger low-level cloud reduction. The low-level cloud fraction response is predicted better by EIS than surface evaporation across all experiments. This suggests that surface-forced increases in evaporation increase low-level cloud fraction mainly by increasing EIS. Additionally, the results herein show that increases in surface evaporation can have a very substantial impact on the rate of increase in radiative cooling with warming, by modifying the temperature and humidity structure of the atmosphere. This has implications for understanding the factors controlling hydrological sensitivity.

Full access
Cathryn E. Birch, Malcolm J. Roberts, Luis Garcia-Carreras, Duncan Ackerley, Michael J. Reeder, Adrian P. Lock, and Reinhard Schiemann

Abstract

There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.

Full access
Stephan R. de Roode, Irina Sandu, Johan J. van der Dussen, Andrew S. Ackerman, Peter Blossey, Dorota Jarecka, Adrian Lock, A. Pier Siebesma, and Bjorn Stevens

Abstract

Results of four Lagrangian stratocumulus-to-shallow-cumulus transition cases as obtained from six different large-eddy simulation models are presented. The model output is remarkably consistent in terms of the representation of the evolution of the mean state, which is characterized by a stratocumulus cloud layer that rises with time and that warms and dries relative to the subcloud layer. Also, the effect of the diurnal insolation on cloud-top entrainment and the moisture flux at the top of the subcloud layer are consistently captured by the models. For some cases, the models diverge in terms of the liquid water path (LWP) during nighttime, which can be explained from the difference in the sign of the buoyancy flux at cloud base. If the subcloud buoyancy fluxes are positive, turbulence sustains a vertically well-mixed layer, causing a cloud layer that is relatively cold and moist and consequently has a high LWP. After some simulation time, all cases exhibit subcloud-layer dynamics that appear to be similar to those of the dry convective boundary layer. The humidity flux from the subcloud layer toward the stratocumulus cloud layer, which is one of the major sources of stratocumulus cloud liquid water, is larger during the night than during the day. The sensible heat flux becomes constant in time, whereas the latent heat flux tends to increase during the transition. These findings are explained from a budget analysis of the subcloud layer.

Full access
Elizabeth J. Kendon, Nigel M. Roberts, Giorgia Fosser, Gill M. Martin, Adrian P. Lock, James M. Murphy, Catherine A. Senior, and Simon O. Tucker

Abstract

For the first time, a model at a resolution on par with operational weather forecast models has been used for national climate scenarios. An ensemble of 12 climate change projections at convection-permitting (2.2 km) scale has been run for the United Kingdom, as part of the UK Climate Projections (UKCP) project. Contrary to previous studies, these show greater future increases in winter mean precipitation in the convection-permitting model compared with the coarser (12 km) driving model. A large part (60%) of the future increase in winter precipitation occurrence over land comes from an increase in convective showers in the 2.2 km model, which are most likely triggered over the sea and advected inland with potentially further development. In the 12 km model, increases in precipitation occurrence over the sea, largely due to an increase in convective showers, do not extend over the land. This is partly due to known limitations of the convection parameterization scheme, used in conventional coarse-resolution climate models, which acts locally without direct memory and so has no ability to advect diagnosed convection over the land or trigger new showers along convective outflow boundaries. This study shows that the importance of accurately representing convection extends beyond short-duration precipitation extremes and the summer season to projecting future changes in mean precipitation in winter.

Free access
Ping Zhu, Christopher S. Bretherton, Martin Köhler, Anning Cheng, Andreas Chlond, Quanzhen Geng, Phil Austin, Jean-Christophe Golaz, Geert Lenderink, Adrian Lock, and Bjorn Stevens

Abstract

Ten single-column models (SCMs) from eight groups are used to simulate a nocturnal nonprecipitating marine stratocumulus-topped mixed layer as part of an intercomparison organized by the Global Energy and Water Cycle Experiment Cloud System Study, Working Group 1. The case is idealized from observations from the Dynamics and Chemistry of Marine Stratocumulus II, Research Flight 1. SCM simulations with operational resolution are supplemented by high-resolution simulations and compared with observations and large-eddy simulations. All participating SCMs are able to maintain a sharp inversion and a mixed cloud-topped layer, although the moisture profiles show a slight gradient in the mixed layer and produce entrainment rates broadly consistent with observations, but the liquid water paths vary by a factor of 10 after only 1 h of simulation at both high and operational resolution. Sensitivity tests show insensitivity to activation of precipitation and shallow convection schemes in most models, as one would observationally expect for this case.

Full access
Rachel A. Stratton, Catherine A. Senior, Simon B. Vosper, Sonja S. Folwell, Ian A. Boutle, Paul D. Earnshaw, Elizabeth Kendon, Adrian P. Lock, Andrew Malcolm, James Manners, Cyril J. Morcrette, Christopher Short, Alison J. Stirling, Christopher M. Taylor, Simon Tucker, Stuart Webster, and Jonathan M. Wilkinson

Abstract

A convection-permitting multiyear regional climate simulation using the Met Office Unified Model has been run for the first time on an Africa-wide domain. The model has been run as part of the Future Climate for Africa (FCFA) Improving Model Processes for African Climate (IMPALA) project, and its configuration, domain, and forcing data are described here in detail. The model [Pan-African Convection-Permitting Regional Climate Simulation with the Met Office UM (CP4-Africa)] uses a 4.5-km horizontal grid spacing at the equator and is run without a convection parameterization, nested within a global atmospheric model driven by observations at the sea surface, which does include a convection scheme. An additional regional simulation, with identical resolution and physical parameterizations to the global model, but with the domain, land surface, and aerosol climatologies of CP4-Africa, has been run to aid in the understanding of the differences between the CP4-Africa and global model, in particular to isolate the impact of the convection parameterization and resolution. The effect of enforcing moisture conservation in CP4-Africa is described and its impact on reducing extreme precipitation values is assessed. Preliminary results from the first five years of the CP4-Africa simulation show substantial improvements in JJA average rainfall compared to the parameterized convection models, with most notably a reduction in the persistent dry bias in West Africa, giving an indication of the benefits to be gained from running a convection-permitting simulation over the whole African continent.

Open access
Bjorn Stevens, Chin-Hoh Moeng, Andrew S. Ackerman, Christopher S. Bretherton, Andreas Chlond, Stephan de Roode, James Edwards, Jean-Christophe Golaz, Hongli Jiang, Marat Khairoutdinov, Michael P. Kirkpatrick, David C. Lewellen, Adrian Lock, Frank Müller, David E. Stevens, Eoin Whelan, and Ping Zhu

Abstract

Data from the first research flight (RF01) of the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study are used to evaluate the fidelity with which large-eddy simulations (LESs) can represent the turbulent structure of stratocumulus-topped boundary layers. The initial data and forcings for this case placed it in an interesting part of parameter space, near the boundary where cloud-top mixing is thought to render the cloud layer unstable on the one hand, or tending toward a decoupled structure on the other hand. The basis of this evaluation consists of sixteen 4-h simulations from 10 modeling centers over grids whose vertical spacing was 5 m at the cloud-top interface and whose horizontal spacing was 35 m. Extensive sensitivity studies of both the configuration of the case and the numerical setup also enhanced the analysis. Overall it was found that (i) if efforts are made to reduce spurious mixing at cloud top, either by refining the vertical grid or limiting the effects of the subgrid model in this region, then the observed turbulent and thermodynamic structure of the layer can be reproduced with some fidelity; (ii) the base, or native configuration of most simulations greatly overestimated mixing at cloud top, tending toward a decoupled layer in which cloud liquid water path and turbulent intensities were grossly underestimated; (iii) the sensitivity of the simulations to the representation of mixing at cloud top is, to a certain extent, amplified by particulars of this case. Overall the results suggest that the use of LESs to map out the behavior of the stratocumulus-topped boundary layer in this interesting region of parameter space requires a more compelling representation of processes at cloud top. In the absence of significant leaps in the understanding of subgrid-scale (SGS) physics, such a representation can only be achieved by a significant refinement in resolution—a refinement that, while conceivable given existing resources, is probably still beyond the reach of most centers.

Full access
Andrew S. Ackerman, Margreet C. vanZanten, Bjorn Stevens, Verica Savic-Jovcic, Christopher S. Bretherton, Andreas Chlond, Jean-Christophe Golaz, Hongli Jiang, Marat Khairoutdinov, Steven K. Krueger, David C. Lewellen, Adrian Lock, Chin-Hoh Moeng, Kozo Nakamura, Markus D. Petters, Jefferson R. Snider, Sonja Weinbrecht, and Mike Zulauf

Abstract

Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.

Full access