Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: Agus Santoso x
  • Refine by Access: All Content x
Clear All Modify Search
Agus Santoso
and
Matthew H. England

Abstract

The variability of Antarctic Intermediate Water (AAIW) in a long-term natural integration of a coupled climate model is examined. The mean state of the climate model includes a realistic representation of AAIW, which appears centered on the σ θ = 27.2 kg m−3 density surface (hereinafter σ 27.2) both in observations and the model. An assessment of ventilation rates on the σ 27.2 surface suggests that this particular climate model forms AAIW in a mostly circumpolar fashion, with a significant contribution from Antarctic Surface Water. This motivates the assessment of oceanic variability along this core AAIW isopycnal surface. Complex empirical orthogonal function analyses decompose the variability into three dominant modes showing circumpolar patterns of zonal wavenumber-1, -2, and -3 on the σ 27.2 density surface. The modes contain eastward-propagating signals at interannual to centennial time scales. Mechanisms forcing this variability are investigated using heat and salt budget analyses at the wintertime outcrop of the σ 27.2 surface. Such an approach ignores the mechanism of AAIW variability sourced by Subantarctic Mode Water variations, which has been examined previously and is, for the most part, beyond the present study. Variability in meltwater rates and atmospheric heat and freshwater fluxes are found to dominate the intermediate water variability at the outcrop region. In contrast, northward Ekman transport of heat and salt plays a significant but localized role in AAIW temperature–salinity variability. There is also an important contribution from the Antarctic Circumpolar Current to the variability at the outcrop region via zonal transport of heat and salt. While the magnitude of AAIW natural variability can be large near the outcrop of the salinity minimum layer, recent observations of cooling and freshening at depth are suggested to be beyond that of the unperturbed system.

Full access
Agus Santoso
and
Matthew H. England

Abstract

The natural variability of the Weddell Sea variety of Antarctic Bottom Water (AABW) is examined in a long-term integration of a coupled climate model. Examination of passive tracer concentrations suggests that the model AABW is predominantly sourced in the Weddell Sea. The maximum rate of the Atlantic sector Antarctic overturning (ψ atl) is shown to effectively represent the outflow of Weddell Sea deep and bottom waters and the compensating inflow of Warm Deep Water (WDW). The variability of ψ atl is found to be driven by surface density variability, which is in turn controlled by sea surface salinity (SSS). This suggests that SSS is a better proxy than SST for post-Holocene paleoclimate reconstructions of the AABW overturning rate. Heat–salt budget and composite analyses reveal that during years of high Weddell Sea salinity, there is an increased removal of summertime sea ice by enhanced wind-driven ice drift, resulting in increased solar radiation absorbed into the ocean. The larger ice-free region in summer then leads to enhanced air–sea heat loss, more rapid ice growth, and therefore greater brine rejection during winter. Together with a negative feedback mechanism involving anomalous WDW inflow and sea ice melting, this results in positively correlated θS anomalies that in turn drive anomalous convection, impacting AABW variability. Analysis of the propagation of θS anomalies is conducted along an isopycnal surface marking the separation boundary between AABW and the overlying Circumpolar Deep Water. Empirical orthogonal function analyses reveal propagation of θS anomalies from the Weddell Sea into the Atlantic interior with the dominant modes characterized by fluctuations on interannual to centennial time scales. Although salinity variability is dominated by along-isopycnal propagation, θ variability is dominated by isopycnal heaving, which implies propagation of density anomalies with the speed of baroclinic waves.

Full access
Guojian Wang
,
Wenju Cai
, and
Agus Santoso

Abstract

Since 1979, three extreme El Niño events occurred, in 1982/83, 1997/98, and 2015/16, with pronounced impacts that disrupted global weather patterns, agriculture, fisheries, and ecosystems. Although all three episodes are referred to as strong equatorial eastern Pacific (EP) El Niño events, the 2015/16 event is considered a mixed regime of both EP and central Pacific (CP) El Niño. During such extreme events, sea surface temperature (SST) anomalies peak over the EP region, hereafter referred to as an extreme warm El Niño (ExtWarmEN) event. Simultaneously, the intertropical convergence zone (ITCZ) moves southward to the usually dry and cold Niño-3 region, resulting in dramatic rainfall increases to more than 5 mm day−1 averaged over boreal winter, referred to as an extreme convective El Niño (ExtConEN) event. However, in climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that are able to simulate both types of events, ExtConEN events are found not to always coincide with ExtWarmEN events and the disassociation becomes more distinct under greenhouse warming when the increased frequency of ExtConEN events is notably larger than that of ExtWarmEN events. The disassociation highlights the role of eastward migration of western Pacific convection and equatorward shift of the South Pacific convergence zone associated with the faster warming over the EP region as a result of greenhouse warming.

Free access
Guojian Wang
,
Wenju Cai
, and
Agus Santoso

Abstract

For many generations, models simulate an Indian Ocean dipole (IOD) that is overly large in amplitude. The possible impact of this systematic bias on climate projections, including a projected frequency increase in extreme positive IOD (pIOD) using a rainfall-based definition, has attracted attention. In particular, a recent study suggests that the increased frequency is an artifact of the overly large IOD amplitude. In contrast, here the opposite is found. Through intermodel ensemble regressions, the present study shows that models producing a high frequency in the present-day climate generate a small future frequency increase. The frequency is associated with the mean equatorial west-minus-east sea surface temperature (SST) gradient: the greater the gradient, the greater the frequency because it is easier to shift convection to the west, which characterizes an extreme pIOD. A greater present-day gradient is associated with a present-day shallower thermocline, lower SSTs, and lower rainfall in the eastern equatorial Indian Ocean (EEIO). Because there is an inherent limit for a maximum rainfall reduction and for the impact on surface cooling by a shallowing of an already shallow mean EEIO thermocline, there is a smaller increase in frequency in models with a shallower present-day EEIO thermocline. Given that a bias of overly shallow EEIO thermocline and overly low EEIO SSTs and rainfall is common in models, the future frequency increase should be underestimated, opposite to an implied overestimation resulting from the overly large IOD amplitude bias. Therefore, correcting the projected frequency from a single bias, without considering other biases that are present, is not appropriate and should be avoided.

Full access
Simon Borlace
,
Wenju Cai
, and
Agus Santoso

Abstract

The amplitude of the El Niño–Southern Oscillation (ENSO) can vary naturally over multidecadal time scales and can be influenced by climate change. However, determining the mechanism for this variation is difficult because of the paucity of observations over such long time scales. Using a 1000-yr integration of a coupled global climate model and a linear stability analysis, it is demonstrated that multidecadal modulation of ENSO amplitude can be driven by variations in the governing dynamics. In this model, the modulation is controlled by the underlying thermocline feedback mechanism, which in turn is governed by the response of the oceanic thermocline slope across the equatorial Pacific to changes in the overlying basinwide zonal winds. Furthermore, the episodic strengthening and weakening of this coupled interaction is shown to be linked to the slowly varying background climate. In comparison with the model statistics, the recent change of ENSO amplitude in observations appears to be still within the range of natural variability. This is despite the apparent warming trend in the mean climate. Hence, this study suggests that it may be difficult to infer a climate change signal from changes in ENSO amplitude alone, particularly given the presently limited observational data.

Full access
Agus Santoso
,
Matthew H. England
, and
Anthony C. Hirst

Abstract

The natural variability of Circumpolar Deep Water (CDW) is analyzed using a long-term integration of a coupled climate model. The variability is decomposed using a standard EOF analysis into three separate modes accounting for 68% and 82% of the total variance in the upper and lower CDW layers, respectively. The first mode exhibits an interbasin-scale variability on multicentennial time scales, originating in the North Atlantic and flowing southward into the Southern Ocean via North Atlantic Deep Water (NADW). Salinity dipole anomalies appear to propagate around the Atlantic meridional overturning circulation on these time scales with the strengthening and weakening of NADW formation. The anomaly propagates northward from the midlatitude subsurface of the South Atlantic and sinks in the North Atlantic before flowing southward along the CDW isopycnal layers. This suggests an interhemispheric connection in the generation of the first CDW variability mode. The second mode shows a localized θS variability in the Brazil–Malvinas confluence zone on multidecadal to centennial time scales. Heat and salt budget analyses reveal that this variability is controlled by meridional advection driven by fluctuations in the strength of the Deep Western Boundary and the Malvinas Currents. The third mode suggests an Antarctic Intermediate Water source in the South Pacific contributing to variability in upper CDW. It is further found that NADW formation is mainly buoyancy driven on the time scales resolved, with only a weak connection with Southern Hemisphere winds. On the other hand, Southern Hemisphere winds have a more direct influence on the rate of NADW outflow into the Southern Ocean. The model’s spatial pattern of θS variability is consistent with the limited observational record in the Southern Hemisphere. However, some observations of decadal CDW θS changes are beyond that seen in the model in its unperturbed state.

Full access
Alexander Pui
,
Ashish Sharma
,
Agus Santoso
, and
Seth Westra

Abstract

The relationship between seasonal aggregate rainfall and large-scale climate modes, particularly the El Niño–Southern Oscillation (ENSO), has been the subject of a significant and ongoing research effort. However, relatively little is known about how the character of individual rainfall events varies as a function of each of these climate modes. This study investigates the change in rainfall occurrence, intensity, and storm interevent time at both daily and subdaily time scales in east Australia, as a function of indices for ENSO, the Indian Ocean dipole (IOD), and the southern annular mode (SAM), with a focus on the cool season months. Long-record datasets have been used to sample a large variety of climate events for better statistical significance. Results using both the daily and subdaily rainfall datasets consistently show that it is the occurrence of rainfall events, rather than the average intensity of rainfall during the events, which is most strongly influenced by each of the climate modes. This is shown to be most likely associated with changes to the time between wet spells. Furthermore, it is found that despite the recent attention in the research literature on other climate modes, ENSO remains the leading driver of rainfall variability over east Australia, particularly farther inland during the winter and spring seasons. These results have important implications for how water resources are managed, as well as how the implications of large-scale climate modes are included in rainfall models to best capture interannual and longer-scale variability.

Full access
Agus Santoso
,
Alexander Sen Gupta
, and
Matthew H. England

Abstract

The genesis of mixed layer temperature anomalies across the Indian Ocean are analyzed in terms of the underlying heat budget components. Observational data, for which a seasonal budget can be computed, and a climate model output, which provides improved spatial and temporal coverage for longer time scales, are examined. The seasonal climatology of the model heat budget is broadly consistent with the observational reconstruction, thus providing certain confidence in extending the model analysis to interannual time scales. To identify the dominant heat budget components, covariance analysis is applied based on the heat budget equation. In addition, the role of the heat budget terms on the generation and decay of temperature anomalies is revealed via a novel temperature variance budget approach. The seasonal evolution of the mixed layer temperature is found to be largely controlled by air–sea heat fluxes, except in the tropics where advection and entrainment are important. A distinct shift in the importance and role of certain heat budget components is shown to be apparent in moving from seasonal to interannual time scales. On these longer time scales, advection gains importance in generating and sustaining anomalies over extensive regions, including the trade wind and midlatitude wind regimes. On the other hand, air–sea heat fluxes tend to drive the evolution of thermal anomalies over subtropical regions including off northwestern Australia. In the tropics, however, they limit the growth of anomalies. Entrainment plays a role in the generation and maintenance of interannual anomalies over localized regions, particularly off Sumatra and over the Seychelles–Chagos Thermocline Ridge. It is further shown that the spatial distribution of the role and importance of these terms is related to oceanographic features of the Indian Ocean. Mixed layer depth effects and the influence of model biases are discussed.

Full access
Jules B. Kajtar
,
Agus Santoso
,
Matthew H. England
, and
Wenju Cai

Abstract

The Pacific and Indian Oceans are connected by an oceanic passage called the Indonesian Throughflow (ITF). In this setting, modes of climate variability over the two oceanic basins interact. El Niño–Southern Oscillation (ENSO) events generate sea surface temperature anomalies (SSTAs) over the Indian Ocean that, in turn, influence ENSO evolution. This raises the question as to whether Indo-Pacific feedback interactions would still occur in a climate system without an Indonesian Throughflow. This issue is investigated here for the first time using a coupled climate model with a blocked Indonesian gateway and a series of partially decoupled experiments in which air–sea interactions over each ocean basin are in turn suppressed. Closing the Indonesian Throughflow significantly alters the mean climate state over the Pacific and Indian Oceans. The Pacific Ocean retains an ENSO-like variability, but it is shifted eastward. In contrast, the Indian Ocean dipole and the Indian Ocean basinwide mode both collapse into a single dominant and drastically transformed mode. While the relationship between ENSO and the altered Indian Ocean mode is weaker than that when the ITF is open, the decoupled experiments reveal a damping effect exerted between the two modes. Despite the weaker Indian Ocean SSTAs and the increased distance between these and the core of ENSO SSTAs, the interbasin interactions remain. This suggests that the atmospheric bridge is a robust element of the Indo-Pacific climate system, linking the Indian and Pacific Oceans even in the absence of an Indonesian Throughflow.

Full access
Khalia J. Hill
,
Agus Santoso
, and
Matthew H. England

Abstract

Interannual rainfall variability over Tasmania is examined using observations and reanalysis data. Tasmanian rainfall is dominated by an east–west gradient of mean rainfall and variability. The Pacific–South American mode (PSA), El Niño–Southern Oscillation (ENSO), and the southern annular mode (SAM) each show clear influences on the interannual variability of Tasmanian rainfall. Composites of rainfall during each phase of ENSO and the PSA suggest a notable islandwide influence of these climate modes on Tasmanian rainfall. In contrast, the positive phase of the SAM is associated with drier conditions over the west of the island. The PSA and the SAM project most prominently over the southwest of the island, whereas the ENSO signature is strongest in the north. Empirical orthogonal functions (EOFs) of rainfall over Tasmania show a leading mode (explaining 72% of total variance) of coherent islandwide in-phase anomalies with dominant periods of 2 and 5 yr. The second EOF accounts for ∼14% of total variation, characterized by out-of-phase east–west anomalies, which is likely a combination of all three modes. The EOF1 mode can be attributed to ENSO, the PSA, and to a lesser extent the SAM.

Full access