Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Aiying Zhang x
  • All content x
Clear All Modify Search
Guoyu Ren, Jiao Li, Yuyu Ren, Ziying Chu, Aiying Zhang, Yaqing Zhou, Lei Zhang, Yuan Zhang, and Tao Bian

Abstract

Trends in surface air temperature (SAT) are a critical indicator for climate change at varied spatial scales. Because of urbanization effects, however, the current SAT records of many urban stations can hardly meet the demands of the studies. Evaluation and adjustment of the urbanization effects on the SAT trends are needed, which requires an objective selection of reference (rural) stations. Based on the station history information from all meteorological stations with long-term records in mainland China, an integrated procedure for determining the reference SAT stations has been developed and is applied in forming a network of reference SAT stations. Historical data from the network are used to assess the urbanization effects on the long-term SAT trends of the stations of the national Reference Climate Network and Basic Meteorological Network (RCN+BMN or national stations), which had been used most frequently in studies of regional climate change throughout the country. This paper describes in detail the integrated procedure and the assessment results of urbanization effects on the SAT trends of the national stations applying the data from the reference station network determined using the procedure. The results showed a highly significant urbanization effect of 0.074°C (10 yr)−1 and urbanization contribution of 24.9% for the national stations of mainland China during the time period 1961–2004, which compared well to results that were reported in previous studies by the authors using the predecessor of the present reference network and the reference stations selected but when applying other methods. The authors are thus confident that the SAT data from the updated China reference station network as reported in this paper best represented the baseline SAT trends nationwide and could be used for evaluating and adjusting the urban biases in the historical data series of the SAT from different observational networks.

Full access
Guoyu Ren, Yaqing Zhou, Ziying Chu, Jiangxing Zhou, Aiying Zhang, Jun Guo, and Xuefeng Liu

Abstract

A dataset of 282 meteorological stations including all of the ordinary and national basic/reference surface stations of north China is used to analyze the urbanization effect on surface air temperature trends. These stations are classified into rural, small city, medium city, large city, and metropolis based on the updated information of total population and specific station locations. The significance of urban warming effects on regional average temperature trends is estimated using monthly mean temperature series of the station group datasets, which undergo inhomogeneity adjustment. The authors found that the largest effect of urbanization on annual mean surface air temperature trends occurs for the large-city station group, with the urban warming being 0.16°C (10 yr)−1, and the effect is the smallest for the small-city station group with urban warming being only 0.07°C (10 yr)−1. A similar assessment is made for the dataset of national basic/reference stations, which has been widely used in regional climate change analyses in China. The results indicate that the regional average annual mean temperature series, as calculated using the data from the national basic/reference stations, is significantly impacted by urban warming, and the trend of urban warming is estimated to be 0.11°C (10 yr)−1. The contribution of urban warming to total annual mean surface air temperature change as estimated with the national basic/reference station dataset reaches 37.9%. It is therefore obvious that, in the current regional average surface air temperature series in north China, or probably in the country as a whole, there still remain large effects from urban warming. The urban warming bias for the regional average temperature anomaly series is corrected. After that, the increasing rate of the regional annual mean temperature is brought down from 0.29°C (10 yr)−1 to 0.18°C (10 yr)−1, and the total change in temperature approaches 0.72°C for the period analyzed.

Full access
Kangmin Wen, Guoyu Ren, Jiao Li, Aiying Zhang, Yuyu Ren, Xiubao Sun, and Yaqing Zhou

Abstract

A dataset from 763 national Reference Climate and Basic Meteorological Stations (RCBMS) was used to analyze surface air temperature (SAT) change in mainland China. The monthly historical observational records had been adjusted for urbanization bias existing in the data series of size-varied urban stations, after they were corrected for data inhomogeneities mainly caused by relocation and instrumentation. The standard procedures for creating area-averaged temperature time series and for calculating linear trend were used. Analyses were made for annual and seasonal mean temperature. Annual mean SAT in mainland China as a whole rose by 1.24°C for the last 55 years, with a warming rate of 0.23°C decade−1. This was close to the warming of 1.09°C observed in global mean land SAT over the period 1951–2010. Compared to the SAT before correction, after-corrected data showed that the urbanization bias had caused an overestimate of the annual warming rate of more than 19.6% during 1961–2015. The winter, autumn, spring, and summer mean warming rates were 0.28°, 0.23°, 0.23°, and 0.15°C decade−1, respectively. The spatial patterns of the annual and seasonal mean SAT trends also exhibited an obvious difference from those of the previous analyses. The largest contrast was a weak warming area appearing in central parts of mainland China, which included a small part of southwestern North China, the northwestern Yangtze River, and the eastern part of Southwest China. The annual mean warming trends in Northeast and North China obviously decreased compared to the previous analyses, which caused a relatively more significant cooling in Northeast China after 1998 under the background of global warming slowdown.

Full access