Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Alan J. Geer x
  • Refine by Access: All Content x
Clear All Modify Search
Massimo Bonavita, Alan J. Geer, and Mats Hamrud

Abstract

Recent success in assimilating cloud- and precipitation-affected satellite observations using the “all-sky” approach is thought to have benefitted from variational data assimilation, particularly its ability to handle moderate nonlinearity and non-Gaussianity and to extract wind information through the generalized tracer effect. Ensemble assimilation relies on assumptions including linearity and Gaussianity that might cause difficulties when using all-sky observations. Here, all-sky assimilation is evaluated in a global ensemble Kalman filter (EnKF) system of near-operational quality, derived from an operational four-dimensional variational (4D-Var) system. To get EnKF working successfully required a new all-sky observation error model (the most successful approach was to inflate error as a multiple of the ensemble spread) and adjustments to localization. With these improvements, assimilation of eight microwave humidity instruments gave 2%–4% improvement in forecast scores whether using EnKF or 4D-Var. Correlations from the ensemble showed that all-sky observations generated sensitivity to wind, temperature, and humidity. EnKF increments shared many similarities with those in 4D-Var. Hence both 4D-Var and ensemble data assimilation were able to make good use of all-sky observations, including the extraction of wind information. In absolute terms the EnKF forecast performance in the troposphere was still worse than that that with 4D-Var, although the gap could be reduced by going from 50 to 100 ensemble members. EnKF errors were larger in the stratosphere, where there are excessive gravity wave increments that are not connected with all-sky assimilation.

Free access
Alan J. Geer, Peter Bauer, and Christopher W. O’Dell

Abstract

The assimilation of cloud- and precipitation-affected observations into weather forecasting systems requires very fast calculations of radiative transfer in the presence of multiple scattering. At the European Centre for Medium-Range Weather Forecasts (ECMWF), performance limitations mean that only a single cloudy calculation (including any precipitation) can be made, and the simulated radiance is a weighted combination of cloudy- and clear-sky radiances. Originally, the weight given to the cloudy part was the maximum cloud fraction in the atmospheric profile. However, this weighting was excessive, and because of nonlinear radiative transfer (the “beamfilling effect”) there were biases in areas of cloud and precipitation. A new approach instead uses the profile average cloud fraction, and decreases RMS errors by 40% in areas of rain or heavy clouds when “truth” comes from multiple independent column simulations. There is improvement all the way from low (e.g., 19 GHz) to high (e.g., 183 GHz) microwave frequencies. There is also improvement when truth comes from microwave imager observations. One minor problem is that biases increase slightly in mid- and upper-tropospheric sounding channels in light-cloud situations, which shows that future improvements will require the cloud fraction to vary according to the optical properties at different frequencies.

Full access
David I. Duncan, Niels Bormann, Alan J. Geer, and Peter Weston

Abstract

Radiances from microwave temperature sounders have been assimilated operationally at ECMWF for two decades, but observations significantly affected by clouds and precipitation have been screened out. Extending successful assimilation beyond clear-sky scenes is a challenge that has taken several years of development to achieve. In this paper we describe the all-sky treatment of AMSU-A, which enables greater numbers of temperature sounding radiances to be used in meteorologically active parts of the troposphere. Successful all-sky assimilation required combining lessons learned from the clear-sky assimilation of AMSU-A with the approach initially developed for humidity-sensitive microwave radiances. This concerned particularly observation thinning, error modeling, and variational quality control. As a result of the move to all-sky assimilation, the forecast impact of AMSU-A now replicates and exceeds that of the previous clear-sky usage. This is shown via trials in comparison to the current ECMWF assimilation system, judged with respect to forecast scores and background fits to independent observations. Persistently cloudy regions and phenomena such as tropical cyclones are better sampled when assimilating AMSU-A in all-sky conditions, causing an increase of about 13% in used channel-5 radiances globally. These impacts are explored, with an emphasis on tropical cyclones in the 2019 season. Independent observations provide consistent evidence that representation of humidity is improved, for example, while extratropical Z500 forecasts are improved by about 0.5% out to at least day 2. On the strength of these results, assimilation of AMSU-A moved to all-sky conditions with the upgrade to IFS cycle 47R3 in October 2021.

Open access
Massimo Bonavita, Rossella Arcucci, Alberto Carrassi, Peter Dueben, Alan J. Geer, Bertrand Le Saux, Nicolas Longépé, Pierre-Philippe Mathieu, and Laure Raynaud
Full access
Stefan Kneifel, José Dias Neto, Davide Ori, Dmitri Moisseev, Jani Tyynelä, Ian S. Adams, Kwo-Sen Kuo, Ralf Bennartz, Alexis Berne, Eugene E. Clothiaux, Patrick Eriksson, Alan J. Geer, Ryan Honeyager, Jussi Leinonen, and Christopher D. Westbrook
Open access
Sid-Ahmed Boukabara, Vladimir Krasnopolsky, Stephen G. Penny, Jebb Q. Stewart, Amy McGovern, David Hall, John E. Ten Hoeve, Jason Hickey, Hung-Lung Allen Huang, John K. Williams, Kayo Ide, Philippe Tissot, Sue Ellen Haupt, Kenneth S. Casey, Nikunj Oza, Alan J. Geer, Eric S. Maddy, and Ross N. Hoffman

Abstract

Promising new opportunities to apply artificial intelligence (AI) to the Earth and environmental sciences are identified, informed by an overview of current efforts in the community. Community input was collected at the first National Oceanic and Atmospheric Administration (NOAA) workshop on “Leveraging AI in the Exploitation of Satellite Earth Observations and Numerical Weather Prediction” held in April 2019. This workshop brought together over 400 scientists, program managers, and leaders from the public, academic, and private sectors in order to enable experts involved in the development and adaptation of AI tools and applications to meet and exchange experiences with NOAA experts. Paths are described to actualize the potential of AI to better exploit the massive volumes of environmental data from satellite and in situ sources that are critical for numerical weather prediction (NWP) and other Earth and environmental science applications. The main lessons communicated from community input via active workshop discussions and polling are reported. Finally, recommendations are presented for both scientists and decision-makers to address some of the challenges facing the adoption of AI across all Earth science.

Open access
Vinia Mattioli, Christophe Accadia, Catherine Prigent, Susanne Crewell, Alan Geer, Patrick Eriksson, Stuart Fox, Juan R. Pardo, Eli J. Mlawer, Maria Cadeddu, Michael Bremer, Carlos De Breuck, Alain Smette, Domenico Cimini, Emma Turner, Mario Mech, Frank S. Marzano, Pascal Brunel, Jerome Vidot, Ralf Bennartz, Tobias Wehr, Sabatino Di Michele, and Viju O. John
Free access