Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Alan L. M. Grant x
  • Refine by Access: All Content x
Clear All Modify Search
Alan L. M. Grant and Stephen E. Belcher

Abstract

This study uses large-eddy simulation (LES) to investigate the characteristics of Langmuir turbulence through the turbulent kinetic energy (TKE) budget. Based on an analysis of the TKE budget a velocity scale for Langmuir turbulence is proposed. The velocity scale depends on both the friction velocity and the surface Stokes drift associated with the wave field. The scaling leads to unique profiles of nondimensional dissipation rate and velocity component variances when the Stokes drift of the wave field is sufficiently large compared to the surface friction velocity. The existence of such a scaling shows that Langmuir turbulence can be considered as a turbulence regime in its own right, rather than a modification of shear-driven turbulence.

Comparisons are made between the LES results and observations, but the lack of information concerning the wave field means these are mainly restricted to comparing profile shapes. The shapes of the LES profiles are consistent with observed profiles. The dissipation length scale for Langmuir turbulence is found to be similar to the dissipation length scale in the shear-driven boundary layer. Beyond this it is not possible to test the proposed scaling directly using available data. Entrainment at the base of the mixed layer is shown to be significantly enhanced over that due to normal shear turbulence.

Full access
Alan L. M. Grant and Stephen E. Belcher

Abstract

This study describes the turbulent processes in the upper ocean boundary layer forced by a constant surface stress in the absence of the Coriolis force using large-eddy simulation. The boundary layer that develops has a two-layer structure, a well-mixed layer above a stratified shear layer. The depth of the mixed layer is approximately constant, whereas the depth of the shear layer increases with time. The turbulent momentum flux varies approximately linearly from the surface to the base of the shear layer.

There is a maximum in the production of turbulence through shear at the base of the mixed layer. The magnitude of the shear production increases with time. The increase is mainly a result of the increase in the turbulent momentum flux at the base of the mixed layer due to the increase in the depth of the boundary layer. The length scale for the shear turbulence is the boundary layer depth. A simple scaling is proposed for the magnitude of the shear production that depends on the surface forcing and the average mixed layer current. The scaling can be interpreted in terms of the divergence of a mean kinetic energy flux.

A simple bulk model of the boundary layer is developed to obtain equations describing the variation of the mixed layer and boundary layer depths with time. The model shows that the rate at which the boundary layer deepens does not depend on the stratification of the thermocline. The bulk model shows that the variation in the mixed layer depth is small as long as the surface buoyancy flux is small.

Full access
Brodie C. Pearson, Alan L. M. Grant, Jeff A. Polton, and Stephen E. Belcher

Abstract

The differences between the conclusions of Noh and Choi and of Pearson et al., which are largely a result of defining different length scales based on different quantities, are discussed. This study shows that the layer over which Langmuir turbulence mixes (nominally h TKE) under a stabilizing surface buoyancy flux should be scaled by a combination of the Langmuir stability length L L and initial/nocturnal boundary layer depth h 0 rather than by the Zilitinkevich length.

Full access
Brodie C. Pearson, Alan L. M. Grant, Jeff A. Polton, and Stephen E. Belcher

Abstract

This study uses large-eddy simulation to investigate the structure of the ocean surface boundary layer (OSBL) in the presence of Langmuir turbulence and stabilizing surface heat fluxes. The OSBL consists of a weakly stratified layer, despite a surface heat flux, above a stratified thermocline. The weakly stratified (mixed) layer is maintained by a combination of a turbulent heat flux produced by the wave-driven Stokes drift and downgradient turbulent diffusion. The scaling of turbulence statistics, such as dissipation and vertical velocity variance, is only affected by the surface heat flux through changes in the mixed layer depth. Diagnostic models are proposed for the equilibrium boundary layer and mixed layer depths in the presence of surface heating. The models are a function of the initial mixed layer depth before heating is imposed and the Langmuir stability length. In the presence of radiative heating, the models are extended to account for the depth profile of the heating.

Full access
Natasha S. Lucas, Alan L. M. Grant, Tom P. Rippeth, Jeff A. Polton, Matthew R. Palmer, Liam Brannigan, and Stephen E. Belcher

Abstract

Understanding the processes that control the evolution of the ocean surface boundary layer (OSBL) is a prerequisite for obtaining accurate simulations of air–sea fluxes of heat and trace gases. Observations of the rate of dissipation of turbulent kinetic energy (ε), temperature, salinity, current structure, and wave field over a period of 9.5 days in the northeast Atlantic during the Ocean Surface Mixing, Ocean Submesoscale Interaction Study (OSMOSIS) are presented. The focus of this study is a storm that passed over the observational area during this period. The profiles of ε in the OSBL are consistent with profiles from large-eddy simulation (LES) of Langmuir turbulence. In the transition layer (TL), at the base of the OSBL, ε was found to vary periodically at the local inertial frequency. A simple bulk model of the OSBL and a parameterization of shear driven turbulence in the TL are developed. The parameterization of ε is based on assumptions about the momentum balance of the OSBL and shear across the TL. The predicted rate of deepening, heat budget, and the inertial currents in the OSBL were in good agreement with the observations, as is the agreement between the observed value of ε and that predicted using the parameterization. A previous study reported spikes of elevated dissipation related to enhanced wind shear alignment at the base of the OSBL after this storm. The spikes in dissipation are not predicted by this new parameterization, implying that they are not an important source of dissipation during the storm.

Open access