Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Alberto Martilli x
  • Refine by Access: All Content x
Clear All Modify Search
Alberto Martilli

Abstract

A mesoscale model with a detailed urban surface exchange parameterization is used to study urban influences on boundary layer structure. The parameterization takes into account thermal and mechanical factors, and it is able to reproduce the most important observed urban boundary layer features. A series of simulations is carried out on a 2D idealized domain to analyze the urban boundary layer sensitivity to wind speed, urban morphology, and rural soil moisture. The results show that, during the night, wind speed is correlated with inversion height, inversion depth, and inversion strength and that mean building height and street-canyon height-to-width ratio are correlated with inversion height but are anticorrelated with inversion depth and inversion strength. A reduction in rural soil moisture reduces inversion height and increases inversion strength. During daytime, differences between urban and rural boundary layers are strongly linked with wind speed and rural soil moisture. A factor analysis technique is used to evaluate the relative importance of thermal and mechanical urban factors in terms of their effects on boundary layer structure. The results show that, during the night, thermal factors are more important in the lower part of the urban boundary layer and mechanical factors are dominant in the upper part. Interactions between thermal and mechanical factors act to increase nocturnal boundary layer height. During the day, thermal factors play the most important role in modulating the PBL height evolution above the city. Interactions between thermal and mechanical factors act to reduce the daytime boundary layer height. Mechanical factors become important in the evening, when the turbulent kinetic energy produced by interactions between the airflow and buildings causes a delay in the decrease of PBL height.

Full access
Francisco Salamanca
,
Alberto Martilli
,
Mukul Tewari
, and
Fei Chen

Abstract

In the last two decades, mesoscale models (MMs) with urban canopy parameterizations have been widely used to study urban boundary layer processes. Different studies show that such parameterizations are sensitive to the urban canopy parameters (UCPs) that define the urban morphology. At the same time, high-resolution UCP databases are becoming available for several cities. Studies are then needed to determine, for a specific application of an MM, the optimum degree of complexity of the urban canopy parameterizations and the resolution and details necessary in the UCP datasets. In this work, and in an attempt to answer the previous issues, four urban canopy schemes, with different degrees of complexity, have been used with the Weather Research and Forecasting (WRF) model to simulate the planetary boundary layer over the city of Houston, Texas, for two days in August 2000. For the UCP two approaches have been considered: one based on three urban classes derived from the National Land Cover Data of the U.S. Geological Survey and one based on the highly detailed National Urban Database and Access Portal Tool (NUDAPT) dataset with a spatial resolution of 1 km2. Two-meter air temperature and surface wind speed have been used in the evaluation. The statistical analysis shows a tendency to overestimate the air temperatures by the simple bulk scheme and underestimate the air temperatures by the more detailed urban canopy parameterizations. Similarly, the bulk and single-layer schemes tend to overestimate the wind speed while the multilayer schemes underestimate it. The three-dimensional analysis of the meteorological fields revealed a possible impact (to be verified against measurements) of both the urban schemes and the UCP on cloud prediction. Moreover, the impact of air conditioning systems on the air temperature and their energy consumption has been evaluated with the most developed urban scheme for the two simulated days. During the night, this anthropogenic heat was responsible for an increase in the air temperature of up to 2°C in the densest urban areas, and the estimated energy consumption was of the same magnitude as energy consumption obtained with different methods when the most detailed UCP database was used. On the basis of the results for the present case study, one can conclude that if the purpose of the simulation requires only an estimate of the 2-m temperature a simple bulk scheme is sufficient but if the purpose of the simulation is an evaluation of an urban heat island mitigation strategy or the evaluation of the energy consumption due to air conditioning at city scale, it is necessary to use a complex urban canopy scheme and a detailed UCP.

Full access
Paola Grossi
,
Philippe Thunis
,
Alberto Martilli
, and
Alain Clappier

Abstract

The Mediterranean Campaign of Photochemical Tracers–Transport and Chemical Evolution that took place in the greater Athens area from 20 August to 20 September 1994 has confirmed the role of sea-breeze circulation in photochemical smog episodes that had been suggested already by a number of experiments and numerical studies.

The meteorological and photochemical modeling of this campaign were discussed in Part I. Part II focuses on the study of the 14 September photochemical smog event associated with a sea-breeze circulation. The objective of the study is to identify and to understand better the nonlinear processes that produce high ozone concentrations. In particular, the effect of land and sea breezes is investigated by isolating the effect of nighttime and daytime emissions on ozone concentrations. The same principle then is used to isolate the effect on ozone concentrations of the two main sources of emissions in the greater Athens area: the industrial area around Elefsis and the Athens urban area. Last, the buildup of ozone from one day to another is investigated.

From this study, it comes out that ozone production in the Athens area is mainly a 1-day phenomenon. The increased values of photochemical pollutant (up to 130 ppb at ground level) reached during summertime late afternoons on mountain slopes to the north and northeast of the city are related mainly to the current-day emissions. Nevertheless, the recirculation of old pollutants can have an important effect on ozone concentrations in downtown Athens, the southern part of the peninsula, and over the sea, especially near Aigina Island.

Full access
Estatio Gutiérrez
,
Jorge E. González
,
Alberto Martilli
,
Robert Bornstein
, and
Mark Arend

Abstract

The Weather Research and Forecasting mesoscale model coupled to a multilayer urban canopy parameterization was used to evaluate the evolution of a 3-day heat wave in New York City, New York, during the summer of 2010. Results from three simulations with different degrees of urban modeling complexity and one with an absence of urban surfaces are compared with observations. To improve the city morphology representation, building information was assimilated and the land cover land-use classification was modified. The thermal and drag effects of buildings represented in the multilayer urban canopy model improve simulations over urban regions, giving better estimates of the surface temperature and wind speed. The accuracy of the simulation is further assessed against more simplified urban parameterizations models. The nighttime excessive cooling shown by the Building Energy Parameterization is compensated for when the Building Energy Model is activated. The turbulent kinetic energy is vertically distributed when using the multilayer scheme with a maximum at the average building height, whereas turbulence production is confined to a few meters above the surface when using the simplified scheme. Evidence for the existence of horizontal roll vortices is presented, and the impact that the horizontal resolution and the time step value have on their formation is assessed.

Full access
Yves-Alain Roulet
,
Alberto Martilli
,
Mathias W. Rotach
, and
Alain Clappier

Abstract

A detailed urban parameterization scheme is used in and above a street canyon. To validate this new scheme, the model is run offline on a vertical column (one-dimensional simulations), using measurements from a 30-m-high tower for upper boundary conditions. Measurements were obtained during the intensive observation period of the Basel Urban Boundary Layer Experiment (BUBBLE). Vertical profiles of meteorological variables are simulated in the street canyon. The validation of the parameterization is made with measurements from the tower in the street canyon and directly above roof height. The results show that the urban parameterization scheme is able to catch most of the typical processes that are induced by an urban surface near the ground. The fit to measured profiles is improved in comparison with a model using the traditional approach for urban parameterization (variation of z 0 to take into account the presence of a city).

Full access
Andrea Zonato
,
Alberto Martilli
,
Pedro A. Jimenez
,
Jimy Dudhia
,
Dino Zardi
, and
Lorenzo Giovannini

Abstract

A new one-dimensional 1.5-order planetary boundary layer (PBL) scheme, based on the K–ε turbulence closure applied to the Reynolds-averaged Navier–Stokes (RANS) equations, is developed and implemented within the Weather Research and Forecasting (WRF) Model. The new scheme includes an analytic solution of the coupled equations for turbulent kinetic energy and dissipation rate. Different versions of the PBL scheme are proposed, with increasing levels of complexity, including a model for the calculation of the Prandtl number, a correction to the dissipation rate equation, and a prognostic equation for the temperature variance. Five different idealized cases are tested: four of them explore convective conditions, and they differ in initial thermal stratification and terrain complexity, while one simulates the very stable boundary layer case known as GABLS. For each case study, an ensemble of different large-eddy simulations (LES) is taken as reference for the comparison with the novel PBL schemes and other state-of-the-art 1- and 1.5-order turbulence closures. Results show that the new PBL K–ε scheme brings improvements in all the cases tested in this study. Specifically, the more significant are obtained with the turbulence closure including a prognostic equation for the temperature variance. Moreover, the largest benefits are obtained for the idealized cases simulating a typical thermal circulation within a two-dimensional valley. This suggests that the use of prognostic equations for dissipation rate and temperature variance, which take into account their transport and history, is particularly important with the increasing complexity of PBL dynamics.

Open access
Timothy W. Juliano
,
Branko Kosović
,
Pedro A. Jiménez
,
Masih Eghdami
,
Sue Ellen Haupt
, and
Alberto Martilli

Abstract

Generating accurate weather forecasts of planetary boundary layer (PBL) properties is challenging in many geographical regions, oftentimes due to complex topography or horizontal variability in, for example, land characteristics. While recent advances in high-performance computing platforms have led to an increase in the spatial resolution of numerical weather prediction (NWP) models, the horizontal gridcell spacing (Δx) of many regional-scale NWP models currently fall within or are beginning to approach the gray zone (i.e., Δx ≈ 100–1000 m). At these gridcell spacings, three-dimensional (3D) effects are important, as the most energetic turbulent eddies are neither fully parameterized (as in traditional mesoscale simulations) nor fully resolved [as in traditional large-eddy simulations (LES)]. In light of this modeling challenge, we have implemented a 3D PBL parameterization for high-resolution mesoscale simulations using the Weather Research and Forecasting Model. The PBL scheme, which is based on the algebraic model developed by Mellor and Yamada, accounts for the 3D effects of turbulence by calculating explicitly the momentum, heat, and moisture flux divergences in addition to the turbulent kinetic energy. In this study, we present results from idealized simulations in the gray zone that illustrate the benefit of using a fully consistent turbulence closure framework under convective conditions. While the 3D PBL scheme reproduces the evolution of convective features more appropriately than the traditional 1D PBL scheme, we highlight the need to improve the turbulent length scale formulation.

Significance Statement

The spatial resolution of weather models continues to increase at a rapid rate in accordance with the enhancement of computing power. As a result, smaller-scale atmospheric features become more explicitly resolved. However, most numerical models still ignore the impact of horizontal weather variations on boundary layer flows, which becomes more important at these smaller spatial scales. To address this issue, we have implemented a new modeling approach, using fundamental principles, which accounts for horizontal variability. Our results show that including three-dimensional effects of turbulence is necessary to achieve realistic boundary layer characteristics. This novel technique may be useful for many applications including complex terrain flows, pollutant dispersion, and surface–atmosphere interaction studies.

Full access
Oscar Brousse
,
Charles Simpson
,
Owain Kenway
,
Alberto Martilli
,
E. Scott Krayenhoff
,
Andrea Zonato
, and
Clare Heaviside

Abstract

Urban climate model evaluation often remains limited by a lack of trusted urban weather observations. The increasing density of personal weather sensors (PWSs) make them a potential rich source of data for urban climate studies that address the lack of representative urban weather observations. In our study, we demonstrate that carefully quality-checked PWS data not only improve urban climate models’ evaluation but can also serve for bias correcting their output prior to any urban climate impact studies. After simulating near-surface air temperatures over London and southeast England during the hot summer of 2018 with the Weather Research and Forecasting (WRF) Model and its building Effect parameterization with the building energy model (BEP–BEM) activated, we evaluated the modeled temperatures against 402 urban PWSs and showcased a heterogeneous spatial distribution of the model’s cool bias that was not captured using official weather stations only. This finding indicated a need for spatially explicit urban bias corrections of air temperatures, which we performed using an innovative method using machine learning to predict the models’ biases in each urban grid cell. This bias-correction technique is the first to consider that modeled urban temperatures follow a nonlinear spatially heterogeneous bias that is decorrelated from urban fraction. Our results showed that the bias correction was beneficial to bias correct daily minimum, daily mean, and daily maximum temperatures in the cities. We recommend that urban climate modelers further investigate the use of quality-checked PWSs for model evaluation and derive a framework for bias correction of urban climate simulations that can serve urban climate impact studies.

Significance Statement

Urban climate simulations are subject to spatially heterogeneous biases in urban air temperatures. Common validation methods using official weather stations do not suffice for detecting these biases. Using a dense set of personal weather sensors in London, we detect these biases before proposing an innovative way to correct them with machine learning techniques. We argue that any urban climate impact study should use such a technique if possible and that urban climate scientists should continue investigating paths to improve our methods.

Open access
Alain Clappier
,
Alberto Martilli
,
Paola Grossi
,
Philippe Thunis
,
Francesco Pasi
,
Bernd C. Krueger
,
Bertrand Calpini
,
Giovanni Graziani
, and
Hubert van den Bergh

Abstract

Numerical simulations compared with field measurements are used to explain the effect of sea breezes on photochemical smog episodes in Athens during the Mediterranean Campaign of Photochemical Tracers on 12–14 September 1994. The numerical simulations, performed using a nonhydrostatic vorticity mesoscale model coupled to the Lurmann–Carter–Coyner photochemical module, are compared with ground-based lidar and aircraft measurements. The current analysis shows that the three selected days include the two main summertime flow patterns characteristic of the Athens peninsula, each of which lead to significantly different pollution amounts. On 12 and 13 September, a strong, northerly synoptic wind reduces the inland penetration of the sea breeze so that ozone concentrations within the greater Athens area remained low. In contrast, the weaker synoptic forcing on 14 September allowed the development of sea breezes over the whole peninsula and high ozone concentrations were found north and east of the city. An analysis based on pollution amounts and wind patterns is carried out to divide the peninsula into regions, each of which corresponds to a specific pollutant behavior.

Full access
Fei Chen
,
Robert Bornstein
,
Sue Grimmond
,
Ju Li
,
Xudong Liang
,
Alberto Martilli
,
Shiguang Miao
,
James Voogt
, and
Yingchun Wang
Full access