Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Alejandro Di Luca x
  • Refine by Access: All Content x
Clear All Modify Search
Alejandro Di Luca
,
Jason P. Evans
,
Acacia Pepler
,
Lisa Alexander
, and
Daniel Argüeso

Abstract

The climate of the eastern seaboard of Australia is strongly influenced by the passage of low pressure systems over the adjacent Tasman Sea due to their associated precipitation and their potential to develop into extreme weather events. The aim of this study is to quantify differences in the climatology of east coast lows derived from the use of six global reanalyses. The methodology is explicitly designed to identify differences between reanalyses arising from differences in their horizontal resolution and their structure (type of forecast model, assimilation scheme, and the kind and number of observations assimilated). As a basis for comparison, reanalysis climatologies are compared with an observation-based climatology. Results show that reanalyses, specially high-resolution products, lead to very similar climatologies of the frequency, intensity, duration, and size of east coast lows when using spatially smoothed (about 300-km horizontal grid meshes) mean sea level pressure fields as input data. Moreover, at these coarse horizontal scales, monthly, interannual, and spatial variabilities appear to be very similar across the various reanalyses with a generally stronger agreement between winter events compared with summer ones. Results also show that, when looking at cyclones using reanalysis data at their native resolution (approaching 50-km grid spacing for the most recent products), uncertainties related to the frequency, intensity, and size of lows are very large and it is not clear which reanalysis, if any, gives a better description of cyclones. Further work is needed in order to evaluate the usefulness of the finescale information in modern reanalyses and to better understand the sources of their differences.

Full access
Acacia S. Pepler
,
Alejandro Di Luca
,
Fei Ji
,
Lisa V. Alexander
,
Jason P. Evans
, and
Steven C. Sherwood

Abstract

The Australian east coast low (ECL) is both a major cause of damaging severe weather and an important contributor to rainfall and dam inflow along the east coast, and is of interest to a wide range of groups including catchment managers and emergency services. For this reason, several studies in recent years have developed and interrogated databases of east coast lows using a variety of automated cyclone detection methods and identification criteria. This paper retunes each method so that all yield a similar event frequency within the ECL region, to enable a detailed intercomparison of the similarities, differences, and relative advantages of each method. All methods are shown to have substantial skill at identifying ECL events leading to major impacts or explosive development, but the choice of method significantly affects both the seasonal and interannual variation of detected ECL numbers. This must be taken into consideration in studies on trends or variability in ECLs, with a subcategorization of ECL events by synoptic situation of key importance.

Full access