Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Alejandro N. Flores x
  • All content x
Clear All Modify Search
Scott Havens, Danny Marks, Katelyn FitzGerald, Matt Masarik, Alejandro N. Flores, Patrick Kormos, and Andrew Hedrick

Abstract

Forecasting the timing and magnitude of snowmelt and runoff is critical to managing mountain water resources. Warming temperatures are increasing the rain–snow transition elevation and are limiting the forecasting skill of statistical models relating historical snow water equivalent to streamflow. While physically based methods are available, they require accurate estimations of the spatial and temporal distribution of meteorological variables in complex terrain. Across many mountainous areas, measurements of precipitation and other meteorological variables are limited to a few reference stations and are not adequate to resolve the complex interactions between topography and atmospheric flow. In this paper, we evaluate the ability of the Weather Research and Forecasting (WRF) Model to approximate the inputs required for a physics-based snow model, iSnobal, instead of using meteorological measurements, for the Boise River Basin (BRB) in Idaho, United States. An iSnobal simulation using station data from 40 locations in and around the BRB resulted in an average root-mean-square error (RMSE) of 4.5 mm compared with 12 SNOTEL measurements. Applying WRF forcings alone was associated with an RMSE of 10.5 mm, while including a simple bias correction to the WRF outputs of temperature and precipitation reduced the RMSE to 6.5 mm. The results highlight the utility of using WRF outputs as input to snowmelt models, as all required input variables are spatiotemporally complete. This will have important benefits in areas with sparse measurement networks and will aid snowmelt and runoff forecasting in mountainous basins.

Full access
Liao-Fan Lin, Ardeshir M. Ebtehaj, Alejandro N. Flores, Satish Bastola, and Rafael L. Bras

Abstract

This paper presents a framework that enables simultaneous assimilation of satellite precipitation and soil moisture observations into the coupled Weather Research and Forecasting (WRF) and Noah land surface model through variational approaches. The authors tested the framework by assimilating precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite. The results show that assimilation of both TRMM and SMOS data can effectively improve the forecast skills of precipitation, top 10-cm soil moisture, and 2-m temperature and specific humidity. Within a 2-day time window, impacts of precipitation data assimilation on the forecasts remain relatively constant for forecast lead times greater than 6 h, while the influence of soil moisture data assimilation increases with lead time. The study also demonstrates that the forecast skill of precipitation, soil moisture, and near-surface temperature and humidity are further improved when both the TRMM and SMOS data are assimilated. In particular, the combined data assimilation reduces the prediction biases and root-mean-square errors, respectively, by 57% and 6% (for precipitation); 73% and 27% (for soil moisture); 17% and 9% (for 2-m temperature); and 33% and 11% (for 2-m specific humidity).

Full access
Liao-Fan Lin, Ardeshir M. Ebtehaj, Rafael L. Bras, Alejandro N. Flores, and Jingfeng Wang

Abstract

The objective of this study is to develop a framework for dynamically downscaling spaceborne precipitation products using the Weather Research and Forecasting (WRF) Model with four-dimensional variational data assimilation (4D-Var). Numerical experiments have been conducted to 1) understand the sensitivity of precipitation downscaling through point-scale precipitation data assimilation and 2) investigate the impact of seasonality and associated changes in precipitation-generating mechanisms on the quality of spatiotemporal downscaling of precipitation. The point-scale experiment suggests that assimilating precipitation can significantly affect the precipitation analysis, forecast, and downscaling. Because of occasional overestimation or underestimation of small-scale summertime precipitation extremes, the numerical experiments presented here demonstrate that the wintertime assimilation produces downscaled precipitation estimates that are in closer agreement with the reference National Centers for Environmental Prediction stage IV dataset than similar summertime experiments. This study concludes that the WRF 4D-Var system is able to effectively downscale a 6-h precipitation product with a spatial resolution of 20 km to hourly precipitation with a spatial resolution of less than 10 km in grid spacing—relevant to finescale hydrologic applications for the era of the Global Precipitation Measurement mission.

Full access