Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Alexandra Anderson-Frey x
  • Refine by Access: All Content x
Clear All Modify Search
Alexandra K. Anderson-Frey
and
Harold Brooks

Abstract

In any discussion of forecast evaluation, it is tempting to fall back on statements reflecting unverified assumptions: “this tornado warning had lower skill because the underlying meteorology reflected a complicated or atypical scenario,” or “that forecast performed worse than we would have expected given the straightforward setup.” These statements of what is and is not a reasonable expectation for warning skill are particularly relevant as the meteorological community’s focus has begun to emphasize non-classic storm environments (e.g., tornadoes spawned by quasi-linear convective systems). In this paper, we build a proof-of-concept methodology to quantify the effect of the near-storm environment on tornado warning skill, and we then test these methods on a 15-yr dataset composed of tens of thousands of tornado events and warnings over the contiguous United States. Our findings include that significant tornadoes rated (E)F2+ have a higher probability of detection (POD) than expected based on their near-storm environments, that nocturnal tornadoes have both worse POD and false alarm ratio (FAR) than even their marginal near-storm environments would suggest, and that tornadoes occurring during the summer months also show worse POD and FAR than their environment-based expectation. Quantifying these shifts in performance in an environmental skill score framework allows us to target the situations in which the greatest improvements may be possible, in terms of forecaster training and/or conceptual models. This work also highlights the essential question that should always be asked in the context of forecast verification: what, exactly, is the baseline standard to which we are comparing forecast performance?

Full access
Zhanxiang Hua
and
Alexandra K. Anderson-Frey

Abstract

A nuanced analysis of the spatial and temporal distribution of supercell tornadoes and the characteristics of the near-storm environments associated with those tornadoes is critical to improving our understanding of the range of environments that can be considered tornado favorable. This work classifies both supercell tornado probabilities and their associated environmental parameters on hourly and daily time scales based on geographical regions: regional probability of tornado events and the probability of deviation above or below the median tornadic near-storm environmental parameter values are estimated by kernel density estimation and classified by self-organizing maps (SOMs). The SOM classification for tornado probability allows for further examination of the deviation of the environmental parameters from the median for each probability cluster. Regions that have similar tornado probabilities but differ in the deviation of the environmental parameters (“parameter anomalies”) are also highlighted using SOMs. The anomaly patterns for different regions and parameters generally evolve along either seasonal or diurnal scales, but rarely both, highlighting the need for flexible models of tornado potential based on the near-storm environment. The spatial and temporal variability of parameter anomalies add complexity to traditional forecasting approaches that depend upon a fixed set of environmental parameter thresholds. This work highlights the need to develop region-specific and potentially time-specific environmental baseline evaluation to improve forecast and warning skill.

Full access
Alexandra K. Anderson-Frey
and
Harold Brooks

Abstract

Deadly tornadoes are rare events, but that level of rarity varies with many factors. In this work, we summarize and update past research on tornado fatalities, and also discuss the environments of deadly tornadoes both from the perspective of proximity soundings (i.e., point-based) and self-organizing maps (i.e., two-dimensional). In our study of 16 232 tornado events from 2003 to 2017, we find that deadly tornadoes are disproportionately likely to have high (E)F-scale ratings, to have right-moving supercell parent storm modes (deadly QLCS tornadoes are exceptionally rare and tend to result in only one death when they do occur), and to occur during the winter and spring. Warning skill is generally higher for deadly tornadoes than for nondeadly tornadoes: 87% of deadly tornadoes were warned in advance, and nearly 95% of tornado deaths occurred within an active warning. The same environments are warned well for both deadly and nondeadly tornadoes, but the deadly tornadoes tend to occur in environments that are less conducive to weaker (E)F0–1 tornadoes. We identify four prototypical deadly tornado scenarios using self-organizing maps, ranging from marginal environments resulting in relatively few fatalities to major deadly outbreak events. Overall results indicate that the most dangerous tornadoes (i.e., those with high numbers of deaths per deadly tornado) also generally occur in environments and under conditions in which warning skill is high. While, generally speaking, the correct storms are being warned, we include some recommendations for additional research and further improvement.

Full access
Paul Markowski
,
Yvette Richardson
,
Matthew Kumjian
,
Alexandra Anderson-Frey
,
Giovanni Jimenez
,
Branden Katona
,
Alicia Klees
,
Robert Schrom
, and
Dana Tobin
Full access
Alexandra K. Anderson-Frey
,
Yvette P. Richardson
,
Andrew R. Dean
,
Richard L. Thompson
, and
Bryan T. Smith

Abstract

In this work, self-organizing maps (SOMs) are used to investigate patterns of favorable near-storm environmental parameters in a 13-yr climatology of 14 814 tornado events and 44 961 tornado warnings across the continental United States. Establishing nine statistically distinct clusters of spatial distributions of the significant tornado parameter (STP) in the 480 km × 480 km region surrounding each tornado event or warning allows for the examination of each cluster in isolation. For tornado events, distinct patterns are associated more with particular times of day, geographical locations, and times of year. For example, the archetypal springtime dryline setup in the Great Plains emerges readily from the data. While high values of STP tend to correspond to relatively high probabilities of detection (PODs) and relatively low false alarm ratios (FARs), the majority of tornado events occur within a pattern of uniformly lower STP, with relatively high FAR and low POD. Overall, the two-dimensional plots produced by the SOM approach provide an intuitive way of creating nuanced climatologies of tornadic near-storm environments.

Full access
Alexandra K. Anderson-Frey
,
Yvette P. Richardson
,
Andrew R. Dean
,
Richard L. Thompson
, and
Bryan T. Smith

Abstract

In this study, a 13-yr climatology of tornado event and warning environments, including metrics of tornado intensity and storm morphology, is investigated with particular focus on the environments of tornadoes associated with quasi-linear convective systems and right-moving supercells. The regions of the environmental parameter space having poor warning performance in various geographical locations, as well as during different times of the day and year, are highlighted. Kernel density estimations of the tornado report and warning environments are produced for two parameter spaces: mixed-layer convective available potential energy (MLCAPE) versus 0–6-km vector shear magnitude (SHR6), and mixed-layer lifting condensation level (MLLCL) versus 0–1-km storm-relative helicity (SRH1). The warning performance is best in environments characteristic of severe convection (i.e., environments featuring large values of MLCAPE and SHR6). For tornadoes occurring during the early evening transition period, MLCAPE is maximized, MLLCL heights decrease, SHR6 and SRH1 increase, tornadoes rated as 2 or greater on the enhanced Fujita scale (EF2+) are most common, the probability of detection is relatively high, and false alarm ratios are relatively low. Overall, the parameter-space distributions of warnings and events are similar; at least in a broad sense, there is no systematic problem with forecasting that explains the high overall false alarm ratio, which instead seems to stem from the inability to know which storms in a given environment will be tornadic.

Full access
Alexandra K. Anderson-Frey
,
Yvette P. Richardson
,
Andrew R. Dean
,
Richard L. Thompson
, and
Bryan T. Smith
Full access
Alexandra K. Anderson-Frey
,
Yvette P. Richardson
,
Andrew R. Dean
,
Richard L. Thompson
, and
Bryan T. Smith

Abstract

The southeastern United States has become a prime area of focus in tornado-related literature due, in part, to the abundance of tornadoes occurring in high-shear low-CAPE (HSLC) environments. Through this analysis of 4133 tornado events and 16 429 tornado warnings in the southeastern United States, we find that tornadoes in the Southeast do indeed have, on average, higher shear and lower CAPE than tornadoes elsewhere in the contiguous United States (CONUS). We also examine tornado warning skill in the form of probability of detection (POD; percent of tornadoes receiving warning prior to tornado occurrence) and false alarm ratio (FAR; percent of tornado warnings for which no corresponding tornado is detected), and find that, on average, POD is better and FAR is worse for tornadoes in the Southeast than for the CONUS as a whole. These measures of warning skill remain consistent even when we consider only HSLC tornadoes. The Southeast also has nearly double the CONUS percentage of deadly tornadoes, with the highest percentage of these deadly tornadoes occurring during the spring, the winter, and around local sunset. On average, however, the tornadoes with the lowest POD also tend to be those that are weakest and least likely to be deadly; for the most part, the most dangerous storms are indeed being successfully warned.

Full access
Alexandra K. Anderson-Frey
,
Yvette P. Richardson
,
Andrew R. Dean
,
Richard L. Thompson
, and
Bryan T. Smith

Abstract

Between 2003 and 2015, there were 5343 outbreak tornadoes and 9389 isolated tornadoes reported in the continental United States. Here, the near-storm environmental parameter-space distributions of these two categories are compared via kernel density estimation, and the seasonal, diurnal, and geographical features of near-storm environments of these two sets of events are compared via self-organizing maps (SOMs). Outbreak tornadoes in a given geographical region tend to be characterized by greater 0–1-km storm-relative helicity and 0–6-km vector shear magnitude than isolated tornadoes in the same geographical region and also have considerably higher tornado warning-based probability of detection (POD) than isolated tornadoes. A SOM of isolated tornadoes highlights that isolated tornadoes with higher POD also tend to feature higher values of the significant tornado parameter (STP), regardless of the specific shape of the area of STP. For a SOM of outbreak tornadoes, when two outbreak environments with similarly high magnitudes but different patterns of STP are compared, the difference is primarily geographical, with one environment dominated by Great Plains and Midwest outbreaks and another dominated by outbreaks in the southeastern United States. Two specific tornado outbreaks are featured, and the events are placed into their climatological context with more nuance than typical single proximity sounding-based approaches would allow.

Full access
Bryan T. Smith
,
Richard L. Thompson
,
Douglas A. Speheger
,
Andrew R. Dean
,
Christopher D. Karstens
, and
Alexandra K. Anderson-Frey

Abstract

The Storm Prediction Center (SPC) has developed a database of damage-surveyed tornadoes in the contiguous United States (2009–17) that relates environmental and radar-derived storm attributes to damage ratings that change during a tornado life cycle. Damage indicators (DIs), and the associated wind speed estimates from tornado damage surveys compiled in the Damage Assessment Toolkit (DAT) dataset, were linked to the nearest manual calculations of 0.5° tilt angle maximum rotational velocity V rot from single-site WSR-88D data. For each radar scan, the maximum wind speed from the highest-rated DI, V rot, and the significant tornado parameter (STP) from the SPC hourly objective mesoscale analysis archive were recorded and analyzed. Results from examining V rot and STP data indicate an increasing conditional probability for higher-rated DIs (i.e., EF-scale wind speed estimate) as both STP and V rot increase. This work suggests that tornadic wind speed exceedance probabilities can be estimated in real time, on a scan-by-scan basis, via V rot and STP for ongoing tornadoes.

Full access